![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 7621 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11079 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 6661 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 11081 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 11080 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 6660 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 11091 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 9994 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 10048 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2648 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2647 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 (class class class)co 6650 1c1 9937 + caddc 9939 2c2 11070 3c3 11071 4c4 11072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-addass 10001 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-2 11079 df-3 11080 df-4 11081 |
This theorem is referenced by: 2t2e4 11177 i4 12967 4bc2eq6 13116 bpoly4 14790 fsumcube 14791 ef01bndlem 14914 6gcd4e2 15255 pythagtriplem1 15521 prmlem2 15827 43prm 15829 1259lem4 15841 2503lem1 15844 2503lem2 15845 2503lem3 15846 4001lem1 15848 4001lem4 15851 cphipval2 23040 quart1lem 24582 log2ub 24676 hgt750lem2 30730 wallispi2lem1 40288 stirlinglem8 40298 sqwvfourb 40446 fmtnorec4 41461 m11nprm 41518 3exp4mod41 41533 gbowgt5 41650 gbpart7 41655 sbgoldbaltlem1 41667 sbgoldbalt 41669 sgoldbeven3prm 41671 mogoldbb 41673 nnsum3primes4 41676 2t6m3t4e0 42126 2p2ne5 42544 |
Copyright terms: Public domain | W3C validator |