MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem4 Structured version   Visualization version   GIF version

Theorem 4001lem4 15851
Description: Lemma for 4001prm 15852. Calculate the GCD of 2↑800 − 1≡2310 with 𝑁 = 4001. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem4 (((2↑800) − 1) gcd 𝑁) = 1

Proof of Theorem 4001lem4
StepHypRef Expression
1 2nn 11185 . . . 4 2 ∈ ℕ
2 8nn0 11315 . . . . . 6 8 ∈ ℕ0
3 0nn0 11307 . . . . . 6 0 ∈ ℕ0
42, 3deccl 11512 . . . . 5 80 ∈ ℕ0
54, 3deccl 11512 . . . 4 800 ∈ ℕ0
6 nnexpcl 12873 . . . 4 ((2 ∈ ℕ ∧ 800 ∈ ℕ0) → (2↑800) ∈ ℕ)
71, 5, 6mp2an 708 . . 3 (2↑800) ∈ ℕ
8 nnm1nn0 11334 . . 3 ((2↑800) ∈ ℕ → ((2↑800) − 1) ∈ ℕ0)
97, 8ax-mp 5 . 2 ((2↑800) − 1) ∈ ℕ0
10 2nn0 11309 . . . . 5 2 ∈ ℕ0
11 3nn0 11310 . . . . 5 3 ∈ ℕ0
1210, 11deccl 11512 . . . 4 23 ∈ ℕ0
13 1nn0 11308 . . . 4 1 ∈ ℕ0
1412, 13deccl 11512 . . 3 231 ∈ ℕ0
1514, 3deccl 11512 . 2 2310 ∈ ℕ0
16 4001prm.1 . . 3 𝑁 = 4001
17 4nn0 11311 . . . . . 6 4 ∈ ℕ0
1817, 3deccl 11512 . . . . 5 40 ∈ ℕ0
1918, 3deccl 11512 . . . 4 400 ∈ ℕ0
20 1nn 11031 . . . 4 1 ∈ ℕ
2119, 20decnncl 11518 . . 3 4001 ∈ ℕ
2216, 21eqeltri 2697 . 2 𝑁 ∈ ℕ
23164001lem2 15849 . . 3 ((2↑800) mod 𝑁) = (2311 mod 𝑁)
24 0p1e1 11132 . . . 4 (0 + 1) = 1
25 eqid 2622 . . . 4 2310 = 2310
2614, 3, 24, 25decsuc 11535 . . 3 (2310 + 1) = 2311
2722, 7, 13, 15, 23, 26modsubi 15776 . 2 (((2↑800) − 1) mod 𝑁) = (2310 mod 𝑁)
28 6nn0 11313 . . . . . 6 6 ∈ ℕ0
2913, 28deccl 11512 . . . . 5 16 ∈ ℕ0
30 9nn0 11316 . . . . 5 9 ∈ ℕ0
3129, 30deccl 11512 . . . 4 169 ∈ ℕ0
3231, 13deccl 11512 . . 3 1691 ∈ ℕ0
3328, 13deccl 11512 . . . . 5 61 ∈ ℕ0
3433, 30deccl 11512 . . . 4 619 ∈ ℕ0
35 5nn0 11312 . . . . . . 7 5 ∈ ℕ0
3617, 35deccl 11512 . . . . . 6 45 ∈ ℕ0
3736, 11deccl 11512 . . . . 5 453 ∈ ℕ0
3829, 28deccl 11512 . . . . . 6 166 ∈ ℕ0
3913, 10deccl 11512 . . . . . . . 8 12 ∈ ℕ0
4039, 13deccl 11512 . . . . . . 7 121 ∈ ℕ0
4111, 13deccl 11512 . . . . . . . . 9 31 ∈ ℕ0
4213, 17deccl 11512 . . . . . . . . . 10 14 ∈ ℕ0
4342nn0zi 11402 . . . . . . . . . . . . 13 14 ∈ ℤ
4411nn0zi 11402 . . . . . . . . . . . . 13 3 ∈ ℤ
45 gcdcom 15235 . . . . . . . . . . . . 13 ((14 ∈ ℤ ∧ 3 ∈ ℤ) → (14 gcd 3) = (3 gcd 14))
4643, 44, 45mp2an 708 . . . . . . . . . . . 12 (14 gcd 3) = (3 gcd 14)
47 3nn 11186 . . . . . . . . . . . . . 14 3 ∈ ℕ
48 4cn 11098 . . . . . . . . . . . . . . . 16 4 ∈ ℂ
49 3cn 11095 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
50 4t3e12 11632 . . . . . . . . . . . . . . . 16 (4 · 3) = 12
5148, 49, 50mulcomli 10047 . . . . . . . . . . . . . . 15 (3 · 4) = 12
52 2p2e4 11144 . . . . . . . . . . . . . . 15 (2 + 2) = 4
5313, 10, 10, 51, 52decaddi 11579 . . . . . . . . . . . . . 14 ((3 · 4) + 2) = 14
54 2lt3 11195 . . . . . . . . . . . . . 14 2 < 3
5547, 17, 1, 53, 54ndvdsi 15136 . . . . . . . . . . . . 13 ¬ 3 ∥ 14
56 3prm 15406 . . . . . . . . . . . . . 14 3 ∈ ℙ
57 coprm 15423 . . . . . . . . . . . . . 14 ((3 ∈ ℙ ∧ 14 ∈ ℤ) → (¬ 3 ∥ 14 ↔ (3 gcd 14) = 1))
5856, 43, 57mp2an 708 . . . . . . . . . . . . 13 (¬ 3 ∥ 14 ↔ (3 gcd 14) = 1)
5955, 58mpbi 220 . . . . . . . . . . . 12 (3 gcd 14) = 1
6046, 59eqtri 2644 . . . . . . . . . . 11 (14 gcd 3) = 1
61 eqid 2622 . . . . . . . . . . . 12 14 = 14
6211dec0h 11522 . . . . . . . . . . . 12 3 = 03
63 2t1e2 11176 . . . . . . . . . . . . . 14 (2 · 1) = 2
6463, 24oveq12i 6662 . . . . . . . . . . . . 13 ((2 · 1) + (0 + 1)) = (2 + 1)
65 2p1e3 11151 . . . . . . . . . . . . 13 (2 + 1) = 3
6664, 65eqtri 2644 . . . . . . . . . . . 12 ((2 · 1) + (0 + 1)) = 3
67 2cn 11091 . . . . . . . . . . . . . . 15 2 ∈ ℂ
68 4t2e8 11181 . . . . . . . . . . . . . . 15 (4 · 2) = 8
6948, 67, 68mulcomli 10047 . . . . . . . . . . . . . 14 (2 · 4) = 8
7069oveq1i 6660 . . . . . . . . . . . . 13 ((2 · 4) + 3) = (8 + 3)
71 8p3e11 11612 . . . . . . . . . . . . 13 (8 + 3) = 11
7270, 71eqtri 2644 . . . . . . . . . . . 12 ((2 · 4) + 3) = 11
7313, 17, 3, 11, 61, 62, 10, 13, 13, 66, 72decma2c 11568 . . . . . . . . . . 11 ((2 · 14) + 3) = 31
7410, 11, 42, 60, 73gcdi 15777 . . . . . . . . . 10 (31 gcd 14) = 1
75 eqid 2622 . . . . . . . . . . 11 31 = 31
7649mulid2i 10043 . . . . . . . . . . . . 13 (1 · 3) = 3
77 ax-1cn 9994 . . . . . . . . . . . . . 14 1 ∈ ℂ
7877addid1i 10223 . . . . . . . . . . . . 13 (1 + 0) = 1
7976, 78oveq12i 6662 . . . . . . . . . . . 12 ((1 · 3) + (1 + 0)) = (3 + 1)
80 3p1e4 11153 . . . . . . . . . . . 12 (3 + 1) = 4
8179, 80eqtri 2644 . . . . . . . . . . 11 ((1 · 3) + (1 + 0)) = 4
82 1t1e1 11175 . . . . . . . . . . . . 13 (1 · 1) = 1
8382oveq1i 6660 . . . . . . . . . . . 12 ((1 · 1) + 4) = (1 + 4)
84 4p1e5 11154 . . . . . . . . . . . . 13 (4 + 1) = 5
8548, 77, 84addcomli 10228 . . . . . . . . . . . 12 (1 + 4) = 5
8635dec0h 11522 . . . . . . . . . . . 12 5 = 05
8783, 85, 863eqtri 2648 . . . . . . . . . . 11 ((1 · 1) + 4) = 05
8811, 13, 13, 17, 75, 61, 13, 35, 3, 81, 87decma2c 11568 . . . . . . . . . 10 ((1 · 31) + 14) = 45
8913, 42, 41, 74, 88gcdi 15777 . . . . . . . . 9 (45 gcd 31) = 1
90 eqid 2622 . . . . . . . . . 10 45 = 45
9169, 80oveq12i 6662 . . . . . . . . . . 11 ((2 · 4) + (3 + 1)) = (8 + 4)
92 8p4e12 11614 . . . . . . . . . . 11 (8 + 4) = 12
9391, 92eqtri 2644 . . . . . . . . . 10 ((2 · 4) + (3 + 1)) = 12
94 5cn 11100 . . . . . . . . . . . 12 5 ∈ ℂ
95 5t2e10 11634 . . . . . . . . . . . 12 (5 · 2) = 10
9694, 67, 95mulcomli 10047 . . . . . . . . . . 11 (2 · 5) = 10
9713, 3, 24, 96decsuc 11535 . . . . . . . . . 10 ((2 · 5) + 1) = 11
9817, 35, 11, 13, 90, 75, 10, 13, 13, 93, 97decma2c 11568 . . . . . . . . 9 ((2 · 45) + 31) = 121
9910, 41, 36, 89, 98gcdi 15777 . . . . . . . 8 (121 gcd 45) = 1
100 eqid 2622 . . . . . . . . 9 121 = 121
101 eqid 2622 . . . . . . . . . 10 12 = 12
10248addid1i 10223 . . . . . . . . . . 11 (4 + 0) = 4
10317dec0h 11522 . . . . . . . . . . 11 4 = 04
104102, 103eqtri 2644 . . . . . . . . . 10 (4 + 0) = 04
105 00id 10211 . . . . . . . . . . . 12 (0 + 0) = 0
10682, 105oveq12i 6662 . . . . . . . . . . 11 ((1 · 1) + (0 + 0)) = (1 + 0)
107106, 78eqtri 2644 . . . . . . . . . 10 ((1 · 1) + (0 + 0)) = 1
10867mulid2i 10043 . . . . . . . . . . . 12 (1 · 2) = 2
109108oveq1i 6660 . . . . . . . . . . 11 ((1 · 2) + 4) = (2 + 4)
110 4p2e6 11162 . . . . . . . . . . . 12 (4 + 2) = 6
11148, 67, 110addcomli 10228 . . . . . . . . . . 11 (2 + 4) = 6
11228dec0h 11522 . . . . . . . . . . 11 6 = 06
113109, 111, 1123eqtri 2648 . . . . . . . . . 10 ((1 · 2) + 4) = 06
11413, 10, 3, 17, 101, 104, 13, 28, 3, 107, 113decma2c 11568 . . . . . . . . 9 ((1 · 12) + (4 + 0)) = 16
11582oveq1i 6660 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
116 5p1e6 11155 . . . . . . . . . . 11 (5 + 1) = 6
11794, 77, 116addcomli 10228 . . . . . . . . . 10 (1 + 5) = 6
118115, 117, 1123eqtri 2648 . . . . . . . . 9 ((1 · 1) + 5) = 06
11939, 13, 17, 35, 100, 90, 13, 28, 3, 114, 118decma2c 11568 . . . . . . . 8 ((1 · 121) + 45) = 166
12013, 36, 40, 99, 119gcdi 15777 . . . . . . 7 (166 gcd 121) = 1
121 eqid 2622 . . . . . . . 8 166 = 166
122 eqid 2622 . . . . . . . . 9 16 = 16
12313, 10, 65, 101decsuc 11535 . . . . . . . . 9 (12 + 1) = 13
124 1p1e2 11134 . . . . . . . . . . 11 (1 + 1) = 2
12563, 124oveq12i 6662 . . . . . . . . . 10 ((2 · 1) + (1 + 1)) = (2 + 2)
126125, 52eqtri 2644 . . . . . . . . 9 ((2 · 1) + (1 + 1)) = 4
127 6cn 11102 . . . . . . . . . . 11 6 ∈ ℂ
128 6t2e12 11641 . . . . . . . . . . 11 (6 · 2) = 12
129127, 67, 128mulcomli 10047 . . . . . . . . . 10 (2 · 6) = 12
130 3p2e5 11160 . . . . . . . . . . 11 (3 + 2) = 5
13149, 67, 130addcomli 10228 . . . . . . . . . 10 (2 + 3) = 5
13213, 10, 11, 129, 131decaddi 11579 . . . . . . . . 9 ((2 · 6) + 3) = 15
13313, 28, 13, 11, 122, 123, 10, 35, 13, 126, 132decma2c 11568 . . . . . . . 8 ((2 · 16) + (12 + 1)) = 45
13413, 10, 65, 129decsuc 11535 . . . . . . . 8 ((2 · 6) + 1) = 13
13529, 28, 39, 13, 121, 100, 10, 11, 13, 133, 134decma2c 11568 . . . . . . 7 ((2 · 166) + 121) = 453
13610, 40, 38, 120, 135gcdi 15777 . . . . . 6 (453 gcd 166) = 1
137 eqid 2622 . . . . . . 7 453 = 453
13829nn0cni 11304 . . . . . . . . 9 16 ∈ ℂ
139138addid1i 10223 . . . . . . . 8 (16 + 0) = 16
14048mulid2i 10043 . . . . . . . . . 10 (1 · 4) = 4
141140, 124oveq12i 6662 . . . . . . . . 9 ((1 · 4) + (1 + 1)) = (4 + 2)
142141, 110eqtri 2644 . . . . . . . 8 ((1 · 4) + (1 + 1)) = 6
14394mulid2i 10043 . . . . . . . . . 10 (1 · 5) = 5
144143oveq1i 6660 . . . . . . . . 9 ((1 · 5) + 6) = (5 + 6)
145 6p5e11 11600 . . . . . . . . . 10 (6 + 5) = 11
146127, 94, 145addcomli 10228 . . . . . . . . 9 (5 + 6) = 11
147144, 146eqtri 2644 . . . . . . . 8 ((1 · 5) + 6) = 11
14817, 35, 13, 28, 90, 139, 13, 13, 13, 142, 147decma2c 11568 . . . . . . 7 ((1 · 45) + (16 + 0)) = 61
14976oveq1i 6660 . . . . . . . 8 ((1 · 3) + 6) = (3 + 6)
150 6p3e9 11170 . . . . . . . . 9 (6 + 3) = 9
151127, 49, 150addcomli 10228 . . . . . . . 8 (3 + 6) = 9
15230dec0h 11522 . . . . . . . 8 9 = 09
153149, 151, 1523eqtri 2648 . . . . . . 7 ((1 · 3) + 6) = 09
15436, 11, 29, 28, 137, 121, 13, 30, 3, 148, 153decma2c 11568 . . . . . 6 ((1 · 453) + 166) = 619
15513, 38, 37, 136, 154gcdi 15777 . . . . 5 (619 gcd 453) = 1
156 eqid 2622 . . . . . 6 619 = 619
157 7nn0 11314 . . . . . . 7 7 ∈ ℕ0
158 eqid 2622 . . . . . . 7 61 = 61
159 5p2e7 11165 . . . . . . . 8 (5 + 2) = 7
16017, 35, 10, 90, 159decaddi 11579 . . . . . . 7 (45 + 2) = 47
161102oveq2i 6661 . . . . . . . 8 ((2 · 6) + (4 + 0)) = ((2 · 6) + 4)
16213, 10, 17, 129, 111decaddi 11579 . . . . . . . 8 ((2 · 6) + 4) = 16
163161, 162eqtri 2644 . . . . . . 7 ((2 · 6) + (4 + 0)) = 16
16463oveq1i 6660 . . . . . . . 8 ((2 · 1) + 7) = (2 + 7)
165 7cn 11104 . . . . . . . . 9 7 ∈ ℂ
166 7p2e9 11172 . . . . . . . . 9 (7 + 2) = 9
167165, 67, 166addcomli 10228 . . . . . . . 8 (2 + 7) = 9
168164, 167, 1523eqtri 2648 . . . . . . 7 ((2 · 1) + 7) = 09
16928, 13, 17, 157, 158, 160, 10, 30, 3, 163, 168decma2c 11568 . . . . . 6 ((2 · 61) + (45 + 2)) = 169
170 9cn 11108 . . . . . . . 8 9 ∈ ℂ
171 9t2e18 11663 . . . . . . . 8 (9 · 2) = 18
172170, 67, 171mulcomli 10047 . . . . . . 7 (2 · 9) = 18
17313, 2, 11, 172, 124, 13, 71decaddci 11580 . . . . . 6 ((2 · 9) + 3) = 21
17433, 30, 36, 11, 156, 137, 10, 13, 10, 169, 173decma2c 11568 . . . . 5 ((2 · 619) + 453) = 1691
17510, 37, 34, 155, 174gcdi 15777 . . . 4 (1691 gcd 619) = 1
176 eqid 2622 . . . . 5 1691 = 1691
177 eqid 2622 . . . . . 6 169 = 169
17828, 13, 124, 158decsuc 11535 . . . . . 6 (61 + 1) = 62
179 6p1e7 11156 . . . . . . . 8 (6 + 1) = 7
180157dec0h 11522 . . . . . . . 8 7 = 07
181179, 180eqtri 2644 . . . . . . 7 (6 + 1) = 07
18282, 24oveq12i 6662 . . . . . . . 8 ((1 · 1) + (0 + 1)) = (1 + 1)
183182, 124eqtri 2644 . . . . . . 7 ((1 · 1) + (0 + 1)) = 2
184127mulid2i 10043 . . . . . . . . 9 (1 · 6) = 6
185184oveq1i 6660 . . . . . . . 8 ((1 · 6) + 7) = (6 + 7)
186 7p6e13 11608 . . . . . . . . 9 (7 + 6) = 13
187165, 127, 186addcomli 10228 . . . . . . . 8 (6 + 7) = 13
188185, 187eqtri 2644 . . . . . . 7 ((1 · 6) + 7) = 13
18913, 28, 3, 157, 122, 181, 13, 11, 13, 183, 188decma2c 11568 . . . . . 6 ((1 · 16) + (6 + 1)) = 23
190170mulid2i 10043 . . . . . . . 8 (1 · 9) = 9
191190oveq1i 6660 . . . . . . 7 ((1 · 9) + 2) = (9 + 2)
192 9p2e11 11619 . . . . . . 7 (9 + 2) = 11
193191, 192eqtri 2644 . . . . . 6 ((1 · 9) + 2) = 11
19429, 30, 28, 10, 177, 178, 13, 13, 13, 189, 193decma2c 11568 . . . . 5 ((1 · 169) + (61 + 1)) = 231
19582oveq1i 6660 . . . . . 6 ((1 · 1) + 9) = (1 + 9)
196 9p1e10 11496 . . . . . . 7 (9 + 1) = 10
197170, 77, 196addcomli 10228 . . . . . 6 (1 + 9) = 10
198195, 197eqtri 2644 . . . . 5 ((1 · 1) + 9) = 10
19931, 13, 33, 30, 176, 156, 13, 3, 13, 194, 198decma2c 11568 . . . 4 ((1 · 1691) + 619) = 2310
20013, 34, 32, 175, 199gcdi 15777 . . 3 (2310 gcd 1691) = 1
201 eqid 2622 . . . . . 6 231 = 231
20231nn0cni 11304 . . . . . . 7 169 ∈ ℂ
203202addid1i 10223 . . . . . 6 (169 + 0) = 169
204 eqid 2622 . . . . . . 7 23 = 23
20513, 28, 179, 122decsuc 11535 . . . . . . 7 (16 + 1) = 17
206108, 124oveq12i 6662 . . . . . . . 8 ((1 · 2) + (1 + 1)) = (2 + 2)
207206, 52eqtri 2644 . . . . . . 7 ((1 · 2) + (1 + 1)) = 4
20876oveq1i 6660 . . . . . . . 8 ((1 · 3) + 7) = (3 + 7)
209 7p3e10 11603 . . . . . . . . 9 (7 + 3) = 10
210165, 49, 209addcomli 10228 . . . . . . . 8 (3 + 7) = 10
211208, 210eqtri 2644 . . . . . . 7 ((1 · 3) + 7) = 10
21210, 11, 13, 157, 204, 205, 13, 3, 13, 207, 211decma2c 11568 . . . . . 6 ((1 · 23) + (16 + 1)) = 40
21312, 13, 29, 30, 201, 203, 13, 3, 13, 212, 198decma2c 11568 . . . . 5 ((1 · 231) + (169 + 0)) = 400
21477mul01i 10226 . . . . . . 7 (1 · 0) = 0
215214oveq1i 6660 . . . . . 6 ((1 · 0) + 1) = (0 + 1)
21613dec0h 11522 . . . . . 6 1 = 01
217215, 24, 2163eqtri 2648 . . . . 5 ((1 · 0) + 1) = 01
21814, 3, 31, 13, 25, 176, 13, 13, 3, 213, 217decma2c 11568 . . . 4 ((1 · 2310) + 1691) = 4001
219218, 16eqtr4i 2647 . . 3 ((1 · 2310) + 1691) = 𝑁
22013, 32, 15, 200, 219gcdi 15777 . 2 (𝑁 gcd 2310) = 1
2219, 15, 22, 27, 220gcdmodi 15778 1 (((2↑800) − 1) gcd 𝑁) = 1
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  7c7 11075  8c8 11076  9c9 11077  0cn0 11292  cz 11377  cdc 11493  cexp 12860  cdvds 14983   gcd cgcd 15216  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  4001prm  15852
  Copyright terms: Public domain W3C validator