MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem4 Structured version   Visualization version   GIF version

Theorem 1259lem4 15841
Description: Lemma for 1259prm 15843. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
1259prm.1 𝑁 = 1259
Assertion
Ref Expression
1259lem4 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)

Proof of Theorem 1259lem4
StepHypRef Expression
1 2nn 11185 . 2 2 ∈ ℕ
2 6nn0 11313 . . . 4 6 ∈ ℕ0
3 2nn0 11309 . . . 4 2 ∈ ℕ0
42, 3deccl 11512 . . 3 62 ∈ ℕ0
5 9nn0 11316 . . 3 9 ∈ ℕ0
64, 5deccl 11512 . 2 629 ∈ ℕ0
7 0z 11388 . 2 0 ∈ ℤ
8 1nn 11031 . 2 1 ∈ ℕ
9 1nn0 11308 . 2 1 ∈ ℕ0
109, 3deccl 11512 . . . . . . 7 12 ∈ ℕ0
11 5nn0 11312 . . . . . . 7 5 ∈ ℕ0
1210, 11deccl 11512 . . . . . 6 125 ∈ ℕ0
13 8nn0 11315 . . . . . 6 8 ∈ ℕ0
1412, 13deccl 11512 . . . . 5 1258 ∈ ℕ0
1514nn0cni 11304 . . . 4 1258 ∈ ℂ
16 ax-1cn 9994 . . . 4 1 ∈ ℂ
17 1259prm.1 . . . . 5 𝑁 = 1259
18 8p1e9 11158 . . . . . 6 (8 + 1) = 9
19 eqid 2622 . . . . . 6 1258 = 1258
2012, 13, 18, 19decsuc 11535 . . . . 5 (1258 + 1) = 1259
2117, 20eqtr4i 2647 . . . 4 𝑁 = (1258 + 1)
2215, 16, 21mvrraddi 10298 . . 3 (𝑁 − 1) = 1258
2322, 14eqeltri 2697 . 2 (𝑁 − 1) ∈ ℕ0
24 9nn 11192 . . . . 5 9 ∈ ℕ
2512, 24decnncl 11518 . . . 4 1259 ∈ ℕ
2617, 25eqeltri 2697 . . 3 𝑁 ∈ ℕ
272, 9deccl 11512 . . . 4 61 ∈ ℕ0
2827, 3deccl 11512 . . 3 612 ∈ ℕ0
29 3nn0 11310 . . . . 5 3 ∈ ℕ0
30 4nn0 11311 . . . . 5 4 ∈ ℕ0
3129, 30deccl 11512 . . . 4 34 ∈ ℕ0
3231nn0zi 11402 . . 3 34 ∈ ℤ
3329, 3deccl 11512 . . . 4 32 ∈ ℕ0
3433, 30deccl 11512 . . 3 324 ∈ ℕ0
35 7nn0 11314 . . . 4 7 ∈ ℕ0
369, 35deccl 11512 . . 3 17 ∈ ℕ0
379, 29deccl 11512 . . . 4 13 ∈ ℕ0
3837, 2deccl 11512 . . 3 136 ∈ ℕ0
39 0nn0 11307 . . . . . 6 0 ∈ ℕ0
4029, 39deccl 11512 . . . . 5 30 ∈ ℕ0
4140, 2deccl 11512 . . . 4 306 ∈ ℕ0
42 8nn 11191 . . . . 5 8 ∈ ℕ
439, 42decnncl 11518 . . . 4 18 ∈ ℕ
4410, 30deccl 11512 . . . . 5 124 ∈ ℕ0
4544, 9deccl 11512 . . . 4 1241 ∈ ℕ0
469, 11deccl 11512 . . . . . 6 15 ∈ ℕ0
4746, 29deccl 11512 . . . . 5 153 ∈ ℕ0
48 1z 11407 . . . . 5 1 ∈ ℤ
4911, 39deccl 11512 . . . . 5 50 ∈ ℕ0
5046, 3deccl 11512 . . . . . 6 152 ∈ ℕ0
513, 11deccl 11512 . . . . . 6 25 ∈ ℕ0
5235, 2deccl 11512 . . . . . . 7 76 ∈ ℕ0
53171259lem3 15840 . . . . . . 7 ((2↑76) mod 𝑁) = (5 mod 𝑁)
54 eqid 2622 . . . . . . . 8 76 = 76
55 4p1e5 11154 . . . . . . . . 9 (4 + 1) = 5
56 7cn 11104 . . . . . . . . . 10 7 ∈ ℂ
57 2cn 11091 . . . . . . . . . 10 2 ∈ ℂ
58 7t2e14 11648 . . . . . . . . . 10 (7 · 2) = 14
5956, 57, 58mulcomli 10047 . . . . . . . . 9 (2 · 7) = 14
609, 30, 55, 59decsuc 11535 . . . . . . . 8 ((2 · 7) + 1) = 15
61 6cn 11102 . . . . . . . . 9 6 ∈ ℂ
62 6t2e12 11641 . . . . . . . . 9 (6 · 2) = 12
6361, 57, 62mulcomli 10047 . . . . . . . 8 (2 · 6) = 12
643, 35, 2, 54, 3, 9, 60, 63decmul2c 11589 . . . . . . 7 (2 · 76) = 152
6551nn0cni 11304 . . . . . . . . 9 25 ∈ ℂ
6665addid2i 10224 . . . . . . . 8 (0 + 25) = 25
6726nncni 11030 . . . . . . . . . 10 𝑁 ∈ ℂ
6867mul02i 10225 . . . . . . . . 9 (0 · 𝑁) = 0
6968oveq1i 6660 . . . . . . . 8 ((0 · 𝑁) + 25) = (0 + 25)
70 5t5e25 11639 . . . . . . . 8 (5 · 5) = 25
7166, 69, 703eqtr4i 2654 . . . . . . 7 ((0 · 𝑁) + 25) = (5 · 5)
7226, 1, 52, 7, 11, 51, 53, 64, 71mod2xi 15773 . . . . . 6 ((2↑152) mod 𝑁) = (25 mod 𝑁)
73 2p1e3 11151 . . . . . . 7 (2 + 1) = 3
74 eqid 2622 . . . . . . 7 152 = 152
7546, 3, 73, 74decsuc 11535 . . . . . 6 (152 + 1) = 153
7649nn0cni 11304 . . . . . . . 8 50 ∈ ℂ
7776addid2i 10224 . . . . . . 7 (0 + 50) = 50
7868oveq1i 6660 . . . . . . 7 ((0 · 𝑁) + 50) = (0 + 50)
79 eqid 2622 . . . . . . . 8 25 = 25
80 2t2e4 11177 . . . . . . . . . 10 (2 · 2) = 4
8180oveq1i 6660 . . . . . . . . 9 ((2 · 2) + 1) = (4 + 1)
8281, 55eqtri 2644 . . . . . . . 8 ((2 · 2) + 1) = 5
83 5t2e10 11634 . . . . . . . 8 (5 · 2) = 10
843, 3, 11, 79, 39, 9, 82, 83decmul1c 11587 . . . . . . 7 (25 · 2) = 50
8577, 78, 843eqtr4i 2654 . . . . . 6 ((0 · 𝑁) + 50) = (25 · 2)
8626, 1, 50, 7, 51, 49, 72, 75, 85modxp1i 15774 . . . . 5 ((2↑153) mod 𝑁) = (50 mod 𝑁)
87 eqid 2622 . . . . . 6 153 = 153
88 eqid 2622 . . . . . . . . 9 15 = 15
8957mulid1i 10042 . . . . . . . . . . 11 (2 · 1) = 2
9089oveq1i 6660 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
9190, 73eqtri 2644 . . . . . . . . 9 ((2 · 1) + 1) = 3
92 5cn 11100 . . . . . . . . . 10 5 ∈ ℂ
9392, 57, 83mulcomli 10047 . . . . . . . . 9 (2 · 5) = 10
943, 9, 11, 88, 39, 9, 91, 93decmul2c 11589 . . . . . . . 8 (2 · 15) = 30
9594oveq1i 6660 . . . . . . 7 ((2 · 15) + 0) = (30 + 0)
9640nn0cni 11304 . . . . . . . 8 30 ∈ ℂ
9796addid1i 10223 . . . . . . 7 (30 + 0) = 30
9895, 97eqtri 2644 . . . . . 6 ((2 · 15) + 0) = 30
99 3cn 11095 . . . . . . . 8 3 ∈ ℂ
100 3t2e6 11179 . . . . . . . 8 (3 · 2) = 6
10199, 57, 100mulcomli 10047 . . . . . . 7 (2 · 3) = 6
1022dec0h 11522 . . . . . . 7 6 = 06
103101, 102eqtri 2644 . . . . . 6 (2 · 3) = 06
1043, 46, 29, 87, 2, 39, 98, 103decmul2c 11589 . . . . 5 (2 · 153) = 306
10567mulid2i 10043 . . . . . . . 8 (1 · 𝑁) = 𝑁
106105, 17eqtri 2644 . . . . . . 7 (1 · 𝑁) = 1259
107 eqid 2622 . . . . . . 7 1241 = 1241
1083, 30deccl 11512 . . . . . . . 8 24 ∈ ℕ0
109 eqid 2622 . . . . . . . . 9 24 = 24
1103, 30, 55, 109decsuc 11535 . . . . . . . 8 (24 + 1) = 25
111 eqid 2622 . . . . . . . . 9 125 = 125
112 eqid 2622 . . . . . . . . 9 124 = 124
113 eqid 2622 . . . . . . . . . 10 12 = 12
114 1p1e2 11134 . . . . . . . . . 10 (1 + 1) = 2
115 2p2e4 11144 . . . . . . . . . 10 (2 + 2) = 4
1169, 3, 9, 3, 113, 113, 114, 115decadd 11570 . . . . . . . . 9 (12 + 12) = 24
117 5p4e9 11167 . . . . . . . . 9 (5 + 4) = 9
11810, 11, 10, 30, 111, 112, 116, 117decadd 11570 . . . . . . . 8 (125 + 124) = 249
119108, 110, 118decsucc 11550 . . . . . . 7 ((125 + 124) + 1) = 250
120 9p1e10 11496 . . . . . . 7 (9 + 1) = 10
12112, 5, 44, 9, 106, 107, 119, 120decaddc2 11575 . . . . . 6 ((1 · 𝑁) + 1241) = 2500
122 eqid 2622 . . . . . . 7 50 = 50
12392mul02i 10225 . . . . . . . . . 10 (0 · 5) = 0
12411, 11, 39, 122, 39, 70, 123decmul1 11585 . . . . . . . . 9 (50 · 5) = 250
125124oveq1i 6660 . . . . . . . 8 ((50 · 5) + 0) = (250 + 0)
12651, 39deccl 11512 . . . . . . . . . 10 250 ∈ ℕ0
127126nn0cni 11304 . . . . . . . . 9 250 ∈ ℂ
128127addid1i 10223 . . . . . . . 8 (250 + 0) = 250
129125, 128eqtri 2644 . . . . . . 7 ((50 · 5) + 0) = 250
13076mul01i 10226 . . . . . . . 8 (50 · 0) = 0
13139dec0h 11522 . . . . . . . 8 0 = 00
132130, 131eqtri 2644 . . . . . . 7 (50 · 0) = 00
13349, 11, 39, 122, 39, 39, 129, 132decmul2c 11589 . . . . . 6 (50 · 50) = 2500
134121, 133eqtr4i 2647 . . . . 5 ((1 · 𝑁) + 1241) = (50 · 50)
13526, 1, 47, 48, 49, 45, 86, 104, 134mod2xi 15773 . . . 4 ((2↑306) mod 𝑁) = (1241 mod 𝑁)
136 eqid 2622 . . . . 5 306 = 306
137 eqid 2622 . . . . . 6 30 = 30
1389dec0h 11522 . . . . . 6 1 = 01
139 00id 10211 . . . . . . . 8 (0 + 0) = 0
140101, 139oveq12i 6662 . . . . . . 7 ((2 · 3) + (0 + 0)) = (6 + 0)
14161addid1i 10223 . . . . . . 7 (6 + 0) = 6
142140, 141eqtri 2644 . . . . . 6 ((2 · 3) + (0 + 0)) = 6
14357mul01i 10226 . . . . . . . 8 (2 · 0) = 0
144143oveq1i 6660 . . . . . . 7 ((2 · 0) + 1) = (0 + 1)
145 0p1e1 11132 . . . . . . 7 (0 + 1) = 1
146144, 145, 1383eqtri 2648 . . . . . 6 ((2 · 0) + 1) = 01
14729, 39, 39, 9, 137, 138, 3, 9, 39, 142, 146decma2c 11568 . . . . 5 ((2 · 30) + 1) = 61
1483, 40, 2, 136, 3, 9, 147, 63decmul2c 11589 . . . 4 (2 · 306) = 612
149 eqid 2622 . . . . . 6 18 = 18
15010, 30, 55, 112decsuc 11535 . . . . . 6 (124 + 1) = 125
151 8cn 11106 . . . . . . 7 8 ∈ ℂ
152151, 16, 18addcomli 10228 . . . . . 6 (1 + 8) = 9
15344, 9, 9, 13, 107, 149, 150, 152decadd 11570 . . . . 5 (1241 + 18) = 1259
154153, 17eqtr4i 2647 . . . 4 (1241 + 18) = 𝑁
15534nn0cni 11304 . . . . . 6 324 ∈ ℂ
156155addid2i 10224 . . . . 5 (0 + 324) = 324
15768oveq1i 6660 . . . . 5 ((0 · 𝑁) + 324) = (0 + 324)
1589, 13deccl 11512 . . . . . 6 18 ∈ ℕ0
1599, 30deccl 11512 . . . . . 6 14 ∈ ℕ0
160 eqid 2622 . . . . . . 7 14 = 14
16116mulid1i 10042 . . . . . . . . 9 (1 · 1) = 1
162161, 114oveq12i 6662 . . . . . . . 8 ((1 · 1) + (1 + 1)) = (1 + 2)
163 1p2e3 11152 . . . . . . . 8 (1 + 2) = 3
164162, 163eqtri 2644 . . . . . . 7 ((1 · 1) + (1 + 1)) = 3
165151mulid1i 10042 . . . . . . . . 9 (8 · 1) = 8
166165oveq1i 6660 . . . . . . . 8 ((8 · 1) + 4) = (8 + 4)
167 8p4e12 11614 . . . . . . . 8 (8 + 4) = 12
168166, 167eqtri 2644 . . . . . . 7 ((8 · 1) + 4) = 12
1699, 13, 9, 30, 149, 160, 9, 3, 9, 164, 168decmac 11566 . . . . . 6 ((18 · 1) + 14) = 32
170151mulid2i 10043 . . . . . . . . 9 (1 · 8) = 8
171170oveq1i 6660 . . . . . . . 8 ((1 · 8) + 6) = (8 + 6)
172 8p6e14 11616 . . . . . . . 8 (8 + 6) = 14
173171, 172eqtri 2644 . . . . . . 7 ((1 · 8) + 6) = 14
174 8t8e64 11662 . . . . . . 7 (8 · 8) = 64
17513, 9, 13, 149, 30, 2, 173, 174decmul1c 11587 . . . . . 6 (18 · 8) = 144
176158, 9, 13, 149, 30, 159, 169, 175decmul2c 11589 . . . . 5 (18 · 18) = 324
177156, 157, 1763eqtr4i 2654 . . . 4 ((0 · 𝑁) + 324) = (18 · 18)
1781, 41, 7, 43, 34, 45, 135, 148, 154, 177mod2xnegi 15775 . . 3 ((2↑612) mod 𝑁) = (324 mod 𝑁)
179171259lem1 15838 . . 3 ((2↑17) mod 𝑁) = (136 mod 𝑁)
180 eqid 2622 . . . 4 612 = 612
181 eqid 2622 . . . 4 17 = 17
182 eqid 2622 . . . . 5 61 = 61
1832, 9, 114, 182decsuc 11535 . . . 4 (61 + 1) = 62
184 7p2e9 11172 . . . . 5 (7 + 2) = 9
18556, 57, 184addcomli 10228 . . . 4 (2 + 7) = 9
18627, 3, 9, 35, 180, 181, 183, 185decadd 11570 . . 3 (612 + 17) = 629
18729, 9deccl 11512 . . . . 5 31 ∈ ℕ0
188 eqid 2622 . . . . . . 7 31 = 31
189 3p2e5 11160 . . . . . . . . 9 (3 + 2) = 5
19099, 57, 189addcomli 10228 . . . . . . . 8 (2 + 3) = 5
1919, 3, 29, 113, 190decaddi 11579 . . . . . . 7 (12 + 3) = 15
192 5p1e6 11155 . . . . . . 7 (5 + 1) = 6
19310, 11, 29, 9, 111, 188, 191, 192decadd 11570 . . . . . 6 (125 + 31) = 156
194114oveq1i 6660 . . . . . . . . 9 ((1 + 1) + 1) = (2 + 1)
195194, 73eqtri 2644 . . . . . . . 8 ((1 + 1) + 1) = 3
196 7p5e12 11607 . . . . . . . . 9 (7 + 5) = 12
19756, 92, 196addcomli 10228 . . . . . . . 8 (5 + 7) = 12
1989, 11, 9, 35, 88, 181, 195, 3, 197decaddc 11572 . . . . . . 7 (15 + 17) = 32
199 eqid 2622 . . . . . . . 8 34 = 34
200 7p3e10 11603 . . . . . . . . 9 (7 + 3) = 10
20156, 99, 200addcomli 10228 . . . . . . . 8 (3 + 7) = 10
20299mulid1i 10042 . . . . . . . . . 10 (3 · 1) = 3
20316addid1i 10223 . . . . . . . . . 10 (1 + 0) = 1
204202, 203oveq12i 6662 . . . . . . . . 9 ((3 · 1) + (1 + 0)) = (3 + 1)
205 3p1e4 11153 . . . . . . . . 9 (3 + 1) = 4
206204, 205eqtri 2644 . . . . . . . 8 ((3 · 1) + (1 + 0)) = 4
207 4cn 11098 . . . . . . . . . . 11 4 ∈ ℂ
208207mulid1i 10042 . . . . . . . . . 10 (4 · 1) = 4
209208oveq1i 6660 . . . . . . . . 9 ((4 · 1) + 0) = (4 + 0)
210207addid1i 10223 . . . . . . . . 9 (4 + 0) = 4
21130dec0h 11522 . . . . . . . . 9 4 = 04
212209, 210, 2113eqtri 2648 . . . . . . . 8 ((4 · 1) + 0) = 04
21329, 30, 9, 39, 199, 201, 9, 30, 39, 206, 212decmac 11566 . . . . . . 7 ((34 · 1) + (3 + 7)) = 44
2143dec0h 11522 . . . . . . . 8 2 = 02
215100, 145oveq12i 6662 . . . . . . . . 9 ((3 · 2) + (0 + 1)) = (6 + 1)
216 6p1e7 11156 . . . . . . . . 9 (6 + 1) = 7
217215, 216eqtri 2644 . . . . . . . 8 ((3 · 2) + (0 + 1)) = 7
218 4t2e8 11181 . . . . . . . . . 10 (4 · 2) = 8
219218oveq1i 6660 . . . . . . . . 9 ((4 · 2) + 2) = (8 + 2)
220 8p2e10 11610 . . . . . . . . 9 (8 + 2) = 10
221219, 220eqtri 2644 . . . . . . . 8 ((4 · 2) + 2) = 10
22229, 30, 39, 3, 199, 214, 3, 39, 9, 217, 221decmac 11566 . . . . . . 7 ((34 · 2) + 2) = 70
2239, 3, 29, 3, 113, 198, 31, 39, 35, 213, 222decma2c 11568 . . . . . 6 ((34 · 12) + (15 + 17)) = 440
224 5t3e15 11635 . . . . . . . . 9 (5 · 3) = 15
22592, 99, 224mulcomli 10047 . . . . . . . 8 (3 · 5) = 15
226 5p2e7 11165 . . . . . . . 8 (5 + 2) = 7
2279, 11, 3, 225, 226decaddi 11579 . . . . . . 7 ((3 · 5) + 2) = 17
228 5t4e20 11637 . . . . . . . . 9 (5 · 4) = 20
22992, 207, 228mulcomli 10047 . . . . . . . 8 (4 · 5) = 20
23061addid2i 10224 . . . . . . . 8 (0 + 6) = 6
2313, 39, 2, 229, 230decaddi 11579 . . . . . . 7 ((4 · 5) + 6) = 26
23229, 30, 2, 199, 11, 2, 3, 227, 231decrmac 11577 . . . . . 6 ((34 · 5) + 6) = 176
23310, 11, 46, 2, 111, 193, 31, 2, 36, 223, 232decma2c 11568 . . . . 5 ((34 · 125) + (125 + 31)) = 4406
234 9cn 11108 . . . . . . . 8 9 ∈ ℂ
235 9t3e27 11664 . . . . . . . 8 (9 · 3) = 27
236234, 99, 235mulcomli 10047 . . . . . . 7 (3 · 9) = 27
237 7p4e11 11605 . . . . . . 7 (7 + 4) = 11
2383, 35, 30, 236, 73, 9, 237decaddci 11580 . . . . . 6 ((3 · 9) + 4) = 31
239 9t4e36 11665 . . . . . . . 8 (9 · 4) = 36
240234, 207, 239mulcomli 10047 . . . . . . 7 (4 · 9) = 36
241151, 61, 172addcomli 10228 . . . . . . 7 (6 + 8) = 14
24229, 2, 13, 240, 205, 30, 241decaddci 11580 . . . . . 6 ((4 · 9) + 8) = 44
24329, 30, 13, 199, 5, 30, 30, 238, 242decrmac 11577 . . . . 5 ((34 · 9) + 8) = 314
24412, 5, 12, 13, 17, 22, 31, 30, 187, 233, 243decma2c 11568 . . . 4 ((34 · 𝑁) + (𝑁 − 1)) = 44064
245 eqid 2622 . . . . 5 136 = 136
2469, 5deccl 11512 . . . . . 6 19 ∈ ℕ0
247246, 30deccl 11512 . . . . 5 194 ∈ ℕ0
248 eqid 2622 . . . . . 6 13 = 13
249 eqid 2622 . . . . . 6 194 = 194
2505, 35deccl 11512 . . . . . 6 97 ∈ ℕ0
2519, 9deccl 11512 . . . . . . 7 11 ∈ ℕ0
252 eqid 2622 . . . . . . 7 324 = 324
253 eqid 2622 . . . . . . . 8 19 = 19
254 eqid 2622 . . . . . . . 8 97 = 97
255234, 16, 120addcomli 10228 . . . . . . . . 9 (1 + 9) = 10
2569, 39, 145, 255decsuc 11535 . . . . . . . 8 ((1 + 9) + 1) = 11
257 9p7e16 11625 . . . . . . . 8 (9 + 7) = 16
2589, 5, 5, 35, 253, 254, 256, 2, 257decaddc 11572 . . . . . . 7 (19 + 97) = 116
259 eqid 2622 . . . . . . . 8 32 = 32
260 eqid 2622 . . . . . . . . 9 11 = 11
2619, 9, 114, 260decsuc 11535 . . . . . . . 8 (11 + 1) = 12
26289oveq1i 6660 . . . . . . . . 9 ((2 · 1) + 2) = (2 + 2)
263262, 115, 2113eqtri 2648 . . . . . . . 8 ((2 · 1) + 2) = 04
26429, 3, 9, 3, 259, 261, 9, 30, 39, 206, 263decmac 11566 . . . . . . 7 ((32 · 1) + (11 + 1)) = 44
265208oveq1i 6660 . . . . . . . 8 ((4 · 1) + 6) = (4 + 6)
266 6p4e10 11598 . . . . . . . . 9 (6 + 4) = 10
26761, 207, 266addcomli 10228 . . . . . . . 8 (4 + 6) = 10
268265, 267eqtri 2644 . . . . . . 7 ((4 · 1) + 6) = 10
26933, 30, 251, 2, 252, 258, 9, 39, 9, 264, 268decmac 11566 . . . . . 6 ((324 · 1) + (19 + 97)) = 440
270145, 138eqtri 2644 . . . . . . . 8 (0 + 1) = 01
271 3t3e9 11180 . . . . . . . . . 10 (3 · 3) = 9
272271, 139oveq12i 6662 . . . . . . . . 9 ((3 · 3) + (0 + 0)) = (9 + 0)
273234addid1i 10223 . . . . . . . . 9 (9 + 0) = 9
274272, 273eqtri 2644 . . . . . . . 8 ((3 · 3) + (0 + 0)) = 9
275101oveq1i 6660 . . . . . . . . 9 ((2 · 3) + 1) = (6 + 1)
27635dec0h 11522 . . . . . . . . 9 7 = 07
277275, 216, 2763eqtri 2648 . . . . . . . 8 ((2 · 3) + 1) = 07
27829, 3, 39, 9, 259, 270, 29, 35, 39, 274, 277decmac 11566 . . . . . . 7 ((32 · 3) + (0 + 1)) = 97
279 4t3e12 11632 . . . . . . . 8 (4 · 3) = 12
280 4p2e6 11162 . . . . . . . . 9 (4 + 2) = 6
281207, 57, 280addcomli 10228 . . . . . . . 8 (2 + 4) = 6
2829, 3, 30, 279, 281decaddi 11579 . . . . . . 7 ((4 · 3) + 4) = 16
28333, 30, 39, 30, 252, 211, 29, 2, 9, 278, 282decmac 11566 . . . . . 6 ((324 · 3) + 4) = 976
2849, 29, 246, 30, 248, 249, 34, 2, 250, 269, 283decma2c 11568 . . . . 5 ((324 · 13) + 194) = 4406
285 6t3e18 11642 . . . . . . . . 9 (6 · 3) = 18
28661, 99, 285mulcomli 10047 . . . . . . . 8 (3 · 6) = 18
2879, 13, 18, 286decsuc 11535 . . . . . . 7 ((3 · 6) + 1) = 19
2889, 3, 3, 63, 115decaddi 11579 . . . . . . 7 ((2 · 6) + 2) = 14
28929, 3, 3, 259, 2, 30, 9, 287, 288decrmac 11577 . . . . . 6 ((32 · 6) + 2) = 194
290 6t4e24 11643 . . . . . . 7 (6 · 4) = 24
29161, 207, 290mulcomli 10047 . . . . . 6 (4 · 6) = 24
2922, 33, 30, 252, 30, 3, 289, 291decmul1c 11587 . . . . 5 (324 · 6) = 1944
29334, 37, 2, 245, 30, 247, 284, 292decmul2c 11589 . . . 4 (324 · 136) = 44064
294244, 293eqtr4i 2647 . . 3 ((34 · 𝑁) + (𝑁 − 1)) = (324 · 136)
29526, 1, 28, 32, 34, 23, 36, 38, 178, 179, 186, 294modxai 15772 . 2 ((2↑629) mod 𝑁) = ((𝑁 − 1) mod 𝑁)
296 eqid 2622 . . . 4 629 = 629
297 eqid 2622 . . . . 5 62 = 62
298139oveq2i 6661 . . . . . 6 ((2 · 6) + (0 + 0)) = ((2 · 6) + 0)
29963oveq1i 6660 . . . . . 6 ((2 · 6) + 0) = (12 + 0)
30010nn0cni 11304 . . . . . . 7 12 ∈ ℂ
301300addid1i 10223 . . . . . 6 (12 + 0) = 12
302298, 299, 3013eqtri 2648 . . . . 5 ((2 · 6) + (0 + 0)) = 12
30311dec0h 11522 . . . . . 6 5 = 05
30481, 55, 3033eqtri 2648 . . . . 5 ((2 · 2) + 1) = 05
3052, 3, 39, 9, 297, 138, 3, 11, 39, 302, 304decma2c 11568 . . . 4 ((2 · 62) + 1) = 125
306 9t2e18 11663 . . . . 5 (9 · 2) = 18
307234, 57, 306mulcomli 10047 . . . 4 (2 · 9) = 18
3083, 4, 5, 296, 13, 9, 305, 307decmul2c 11589 . . 3 (2 · 629) = 1258
309308, 22eqtr4i 2647 . 2 (2 · 629) = (𝑁 − 1)
310 npcan 10290 . . 3 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
31167, 16, 310mp2an 708 . 2 ((𝑁 − 1) + 1) = 𝑁
31268oveq1i 6660 . . 3 ((0 · 𝑁) + 1) = (0 + 1)
313145, 312, 1613eqtr4i 2654 . 2 ((0 · 𝑁) + 1) = (1 · 1)
3141, 6, 7, 8, 9, 23, 295, 309, 311, 313mod2xnegi 15775 1 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  7c7 11075  8c8 11076  9c9 11077  0cn0 11292  cdc 11493   mod cmo 12668  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  1259prm  15843
  Copyright terms: Public domain W3C validator