MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6gcd4e2 Structured version   Visualization version   GIF version

Theorem 6gcd4e2 15255
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6gcd4e2 (6 gcd 4) = 2

Proof of Theorem 6gcd4e2
StepHypRef Expression
1 6nn 11189 . . . 4 6 ∈ ℕ
21nnzi 11401 . . 3 6 ∈ ℤ
3 4z 11411 . . 3 4 ∈ ℤ
4 gcdcom 15235 . . 3 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6))
52, 3, 4mp2an 708 . 2 (6 gcd 4) = (4 gcd 6)
6 4cn 11098 . . . 4 4 ∈ ℂ
7 2cn 11091 . . . 4 2 ∈ ℂ
8 4p2e6 11162 . . . 4 (4 + 2) = 6
96, 7, 8addcomli 10228 . . 3 (2 + 4) = 6
109oveq2i 6661 . 2 (4 gcd (2 + 4)) = (4 gcd 6)
11 2z 11409 . . . . 5 2 ∈ ℤ
12 gcdadd 15247 . . . . 5 ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2)))
1311, 11, 12mp2an 708 . . . 4 (2 gcd 2) = (2 gcd (2 + 2))
14 2p2e4 11144 . . . . . 6 (2 + 2) = 4
1514oveq2i 6661 . . . . 5 (2 gcd (2 + 2)) = (2 gcd 4)
16 gcdcom 15235 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2))
1711, 3, 16mp2an 708 . . . . 5 (2 gcd 4) = (4 gcd 2)
1815, 17eqtri 2644 . . . 4 (2 gcd (2 + 2)) = (4 gcd 2)
1913, 18eqtri 2644 . . 3 (2 gcd 2) = (4 gcd 2)
20 gcdid 15248 . . . . 5 (2 ∈ ℤ → (2 gcd 2) = (abs‘2))
2111, 20ax-mp 5 . . . 4 (2 gcd 2) = (abs‘2)
22 2re 11090 . . . . 5 2 ∈ ℝ
23 0le2 11111 . . . . 5 0 ≤ 2
24 absid 14036 . . . . 5 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
2522, 23, 24mp2an 708 . . . 4 (abs‘2) = 2
2621, 25eqtri 2644 . . 3 (2 gcd 2) = 2
27 gcdadd 15247 . . . 4 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4)))
283, 11, 27mp2an 708 . . 3 (4 gcd 2) = (4 gcd (2 + 4))
2919, 26, 283eqtr3ri 2653 . 2 (4 gcd (2 + 4)) = 2
305, 10, 293eqtr2i 2650 1 (6 gcd 4) = 2
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939  cle 10075  2c2 11070  4c4 11072  6c6 11074  cz 11377  abscabs 13974   gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  6lcm4e12  15329
  Copyright terms: Public domain W3C validator