Step | Hyp | Ref
| Expression |
1 | | nfra1 2941 |
. 2
⊢
Ⅎ𝑛∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) |
2 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟))) |
3 | 2 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))) |
4 | 3 | 2rexbidv 3057 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))) |
5 | 4 | cbvralv 3171 |
. . . . 5
⊢
(∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∀𝑚 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) |
6 | | 6nn 11189 |
. . . . . . . . 9
⊢ 6 ∈
ℕ |
7 | 6 | nnzi 11401 |
. . . . . . . 8
⊢ 6 ∈
ℤ |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ∈
ℤ) |
9 | | evenz 41543 |
. . . . . . . . 9
⊢ (𝑛 ∈ Even → 𝑛 ∈
ℤ) |
10 | | 2z 11409 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
11 | 10 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ Even → 2 ∈
ℤ) |
12 | 9, 11 | zaddcld 11486 |
. . . . . . . 8
⊢ (𝑛 ∈ Even → (𝑛 + 2) ∈
ℤ) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ ℤ) |
14 | | 4cn 11098 |
. . . . . . . . . 10
⊢ 4 ∈
ℂ |
15 | | 2cn 11091 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
16 | | 4p2e6 11162 |
. . . . . . . . . . 11
⊢ (4 + 2) =
6 |
17 | 16 | eqcomi 2631 |
. . . . . . . . . 10
⊢ 6 = (4 +
2) |
18 | 14, 15, 17 | mvrraddi 10298 |
. . . . . . . . 9
⊢ (6
− 2) = 4 |
19 | | 2p2e4 11144 |
. . . . . . . . . 10
⊢ (2 + 2) =
4 |
20 | | 2evenALTV 41603 |
. . . . . . . . . . 11
⊢ 2 ∈
Even |
21 | | evenltle 41626 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ Even ∧ 2 ∈ Even
∧ 2 < 𝑛) → (2 +
2) ≤ 𝑛) |
22 | 20, 21 | mp3an2 1412 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛) |
23 | 19, 22 | syl5eqbrr 4689 |
. . . . . . . . 9
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → 4 ≤ 𝑛) |
24 | 18, 23 | syl5eqbr 4688 |
. . . . . . . 8
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 − 2) ≤
𝑛) |
25 | | 6re 11101 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℝ |
26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Even → 6 ∈
ℝ) |
27 | | 2re 11090 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
28 | 27 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Even → 2 ∈
ℝ) |
29 | 9 | zred 11482 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Even → 𝑛 ∈
ℝ) |
30 | 26, 28, 29 | 3jca 1242 |
. . . . . . . . . 10
⊢ (𝑛 ∈ Even → (6 ∈
ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ)) |
31 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 ∈ ℝ ∧
2 ∈ ℝ ∧ 𝑛
∈ ℝ)) |
32 | | lesubadd 10500 |
. . . . . . . . 9
⊢ ((6
∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((6 − 2) ≤
𝑛 ↔ 6 ≤ (𝑛 + 2))) |
33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → ((6 − 2) ≤
𝑛 ↔ 6 ≤ (𝑛 + 2))) |
34 | 24, 33 | mpbid 222 |
. . . . . . 7
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ≤ (𝑛 + 2)) |
35 | | eluz2 11693 |
. . . . . . 7
⊢ ((𝑛 + 2) ∈
(ℤ≥‘6) ↔ (6 ∈ ℤ ∧ (𝑛 + 2) ∈ ℤ ∧ 6
≤ (𝑛 +
2))) |
36 | 8, 13, 34, 35 | syl3anbrc 1246 |
. . . . . 6
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈
(ℤ≥‘6)) |
37 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 + 2) → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))) |
38 | 37 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 2) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))) |
39 | 38 | 2rexbidv 3057 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))) |
40 | 39 | rspcv 3305 |
. . . . . 6
⊢ ((𝑛 + 2) ∈
(ℤ≥‘6) → (∀𝑚 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))) |
41 | 36, 40 | syl 17 |
. . . . 5
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑚 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))) |
42 | 5, 41 | syl5bi 232 |
. . . 4
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))) |
43 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑝(𝑛 ∈ Even ∧ 2 < 𝑛) |
44 | | nfre1 3005 |
. . . . 5
⊢
Ⅎ𝑝∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) |
45 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑞((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) |
46 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑞ℙ |
47 | | nfre1 3005 |
. . . . . . . 8
⊢
Ⅎ𝑞∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) |
48 | 46, 47 | nfrex 3007 |
. . . . . . 7
⊢
Ⅎ𝑞∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) |
49 | | simplrl 800 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑝 ∈ ℙ) |
50 | | simplrr 801 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑞 ∈ ℙ) |
51 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℙ) |
52 | 49, 50, 51 | 3jca 1242 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ)) |
53 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝑛 ∈ Even
∧ 2 < 𝑛) ∧
(𝑝 ∈ ℙ ∧
𝑞 ∈ ℙ)) ∧
𝑟 ∈ ℙ) ∧
(𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ)) |
54 | | simp-4l 806 |
. . . . . . . . . . 11
⊢
(((((𝑛 ∈ Even
∧ 2 < 𝑛) ∧
(𝑝 ∈ ℙ ∧
𝑞 ∈ ℙ)) ∧
𝑟 ∈ ℙ) ∧
(𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 ∈ Even ) |
55 | | simpr 477 |
. . . . . . . . . . 11
⊢
(((((𝑛 ∈ Even
∧ 2 < 𝑛) ∧
(𝑝 ∈ ℙ ∧
𝑞 ∈ ℙ)) ∧
𝑟 ∈ ℙ) ∧
(𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) |
56 | | mogoldbblem 41629 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥)) |
57 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑦 → (𝑝 + 𝑞) = (𝑦 + 𝑞)) |
58 | 57 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑦 → (𝑛 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑞))) |
59 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑥 → (𝑦 + 𝑞) = (𝑦 + 𝑥)) |
60 | 59 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑥 → (𝑛 = (𝑦 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑥))) |
61 | 58, 60 | cbvrex2v 3180 |
. . . . . . . . . . . 12
⊢
(∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥)) |
62 | 56, 61 | sylibr 224 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) |
63 | 53, 54, 55, 62 | syl3anc 1326 |
. . . . . . . . . 10
⊢
(((((𝑛 ∈ Even
∧ 2 < 𝑛) ∧
(𝑝 ∈ ℙ ∧
𝑞 ∈ ℙ)) ∧
𝑟 ∈ ℙ) ∧
(𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) |
64 | 63 | exp31 630 |
. . . . . . . . 9
⊢ (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (𝑟 ∈ ℙ → ((𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
65 | 64 | rexlimdv 3030 |
. . . . . . . 8
⊢ (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
66 | 65 | expr 643 |
. . . . . . 7
⊢ (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (𝑞 ∈ ℙ → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
67 | 45, 48, 66 | rexlimd 3026 |
. . . . . 6
⊢ (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
68 | 67 | ex 450 |
. . . . 5
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑝 ∈ ℙ → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
69 | 43, 44, 68 | rexlimd 3026 |
. . . 4
⊢ ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
70 | 42, 69 | syldc 48 |
. . 3
⊢
(∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ((𝑛 ∈ Even ∧ 2 < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
71 | 70 | expd 452 |
. 2
⊢
(∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ Even → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
72 | 1, 71 | ralrimi 2957 |
1
⊢
(∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |