![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlkdlem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for 2wlkd 26832. (Contributed by AV, 14-Feb-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
Ref | Expression |
---|---|
2wlkdlem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
2 | 2wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
3 | 2wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
4 | 2wlkd.s | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
5 | 2, 3, 4 | 2wlkdlem3 26823 | . . . 4 ⊢ (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) |
6 | simp1 1061 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴) | |
7 | simp2 1062 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵) | |
8 | 6, 7 | neeq12d 2855 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴 ≠ 𝐵)) |
9 | simp3 1063 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶) | |
10 | 7, 9 | neeq12d 2855 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵 ≠ 𝐶)) |
11 | 8, 10 | anbi12d 747 | . . . . 5 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) ↔ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶))) |
12 | 11 | bicomd 213 | . . . 4 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
13 | 5, 12 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
14 | 1, 13 | mpbid 222 | . 2 ⊢ (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
15 | 2, 3 | 2wlkdlem2 26822 | . . . 4 ⊢ (0..^(#‘𝐹)) = {0, 1} |
16 | 15 | raleqi 3142 | . . 3 ⊢ (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
17 | c0ex 10034 | . . . 4 ⊢ 0 ∈ V | |
18 | 1ex 10035 | . . . 4 ⊢ 1 ∈ V | |
19 | fveq2 6191 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
20 | oveq1 6657 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) | |
21 | 0p1e1 11132 | . . . . . . 7 ⊢ (0 + 1) = 1 | |
22 | 20, 21 | syl6eq 2672 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
23 | 22 | fveq2d 6195 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
24 | 19, 23 | neeq12d 2855 | . . . 4 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
25 | fveq2 6191 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
26 | oveq1 6657 | . . . . . . 7 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
27 | 1p1e2 11134 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
28 | 26, 27 | syl6eq 2672 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
29 | 28 | fveq2d 6195 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
30 | 25, 29 | neeq12d 2855 | . . . 4 ⊢ (𝑘 = 1 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2))) |
31 | 17, 18, 24, 30 | ralpr 4238 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
32 | 16, 31 | bitri 264 | . 2 ⊢ (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
33 | 14, 32 | sylibr 224 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 {cpr 4179 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 2c2 11070 ..^cfzo 12465 #chash 13117 〈“cs2 13586 〈“cs3 13587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 |
This theorem is referenced by: 2wlkd 26832 |
Copyright terms: Public domain | W3C validator |