![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiexdiv | Structured version Visualization version GIF version |
Description: In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
archiexdiv.b | ⊢ 𝐵 = (Base‘𝑊) |
archiexdiv.0 | ⊢ 0 = (0g‘𝑊) |
archiexdiv.i | ⊢ < = (lt‘𝑊) |
archiexdiv.x | ⊢ · = (.g‘𝑊) |
Ref | Expression |
---|---|
archiexdiv | ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiexdiv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | archiexdiv.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
3 | archiexdiv.i | . . . . 5 ⊢ < = (lt‘𝑊) | |
4 | archiexdiv.x | . . . . 5 ⊢ · = (.g‘𝑊) | |
5 | 1, 2, 3, 4 | isarchi3 29741 | . . . 4 ⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
6 | 5 | biimpa 501 | . . 3 ⊢ ((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
7 | 6 | 3ad2ant1 1082 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
8 | simp3 1063 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → 0 < 𝑋) | |
9 | breq2 4657 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) | |
10 | oveq2 6658 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑛 · 𝑥) = (𝑛 · 𝑋)) | |
11 | 10 | breq2d 4665 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 < (𝑛 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑋))) |
12 | 11 | rexbidv 3052 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋))) |
13 | 9, 12 | imbi12d 334 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)))) |
14 | breq1 4656 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 < (𝑛 · 𝑋) ↔ 𝑌 < (𝑛 · 𝑋))) | |
15 | 14 | rexbidv 3052 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋) ↔ ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋))) |
16 | 15 | imbi2d 330 | . . . 4 ⊢ (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
17 | 13, 16 | rspc2v 3322 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
18 | 17 | 3ad2ant2 1083 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
19 | 7, 8, 18 | mp2d 49 | 1 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℕcn 11020 Basecbs 15857 0gc0g 16100 ltcplt 16941 .gcmg 17540 oGrpcogrp 29698 Archicarchi 29731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-toset 17034 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-mulg 17541 df-omnd 29699 df-ogrp 29700 df-inftm 29732 df-archi 29733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |