Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5bmN Structured version   Visualization version   GIF version

Theorem baerlem5bmN 37006
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Subtraction version of second equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 37007 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5bmN (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5bmN
StepHypRef Expression
1 baerlem3.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21eldifad 3586 . . . . 5 (𝜑𝑌𝑉)
3 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
43eldifad 3586 . . . . 5 (𝜑𝑍𝑉)
5 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
6 baerlem5a.p . . . . . 6 + = (+g𝑊)
7 eqid 2622 . . . . . 6 (invg𝑊) = (invg𝑊)
8 baerlem3.m . . . . . 6 = (-g𝑊)
95, 6, 7, 8grpsubval 17465 . . . . 5 ((𝑌𝑉𝑍𝑉) → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
102, 4, 9syl2anc 693 . . . 4 (𝜑 → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
1110sneqd 4189 . . 3 (𝜑 → {(𝑌 𝑍)} = {(𝑌 + ((invg𝑊)‘𝑍))})
1211fveq2d 6195 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}))
13 baerlem3.o . . 3 0 = (0g𝑊)
14 baerlem3.s . . 3 = (LSSum‘𝑊)
15 baerlem3.n . . 3 𝑁 = (LSpan‘𝑊)
16 baerlem3.w . . 3 (𝜑𝑊 ∈ LVec)
17 baerlem3.x . . 3 (𝜑𝑋𝑉)
18 lveclmod 19106 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1916, 18syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
205, 7lmodvnegcl 18904 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((invg𝑊)‘𝑍) ∈ 𝑉)
2119, 4, 20syl2anc 693 . . . 4 (𝜑 → ((invg𝑊)‘𝑍) ∈ 𝑉)
22 eqid 2622 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
235, 22, 15, 19, 2, 4lspprcl 18978 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
24 baerlem3.c . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
255, 13, 22, 19, 23, 17, 24lssneln0 18952 . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
265, 15, 16, 17, 2, 4, 24lspindpi 19132 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2726simpld 475 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
285, 13, 15, 16, 25, 2, 27lspsnne1 19117 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
29 baerlem3.d . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
3029necomd 2849 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))
315, 13, 15, 16, 3, 2, 30lspsnne1 19117 . . . . . 6 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌}))
325, 15, 16, 17, 4, 2, 31, 24lspexchn2 19131 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
33 lmodgrp 18870 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
3419, 33syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
3534adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp)
364adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍𝑉)
375, 7grpinvinv 17482 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑍𝑉) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3835, 36, 37syl2anc 693 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3919adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod)
405, 22, 15, 19, 2, 17lspprcl 18978 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
4140adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
42 simpr 477 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
4322, 7lssvnegcl 18956 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4439, 41, 42, 43syl3anc 1326 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4538, 44eqeltrrd 2702 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
4632, 45mtand 691 . . . 4 (𝜑 → ¬ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
475, 15, 16, 21, 17, 2, 28, 46lspexchn2 19131 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg𝑊)‘𝑍)}))
485, 7, 15lspsnneg 19006 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
4919, 4, 48syl2anc 693 . . . 4 (𝜑 → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5029, 49neeqtrrd 2868 . . 3 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg𝑊)‘𝑍)}))
515, 13, 7grpinvnzcl 17487 . . . 4 ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
5234, 3, 51syl2anc 693 . . 3 (𝜑 → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
535, 8, 13, 14, 15, 16, 17, 47, 50, 1, 52, 6baerlem5b 37004 . 2 (𝜑 → (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}) = (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))))
5449oveq2d 6666 . . 3 (𝜑 → ((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
5510eqcomd 2628 . . . . . . 7 (𝜑 → (𝑌 + ((invg𝑊)‘𝑍)) = (𝑌 𝑍))
5655oveq2d 6666 . . . . . 6 (𝜑 → (𝑋 (𝑌 + ((invg𝑊)‘𝑍))) = (𝑋 (𝑌 𝑍)))
5756sneqd 4189 . . . . 5 (𝜑 → {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))} = {(𝑋 (𝑌 𝑍))})
5857fveq2d 6195 . . . 4 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (𝑁‘{(𝑋 (𝑌 𝑍))}))
5958oveq1d 6665 . . 3 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋})) = ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))
6054, 59ineq12d 3815 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
6112, 53, 603eqtrd 2660 1 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cin 3573  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  LSSumclsm 18049  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator