Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5bmN Structured version   Visualization version   Unicode version

Theorem baerlem5bmN 37006
Description: An equality that holds when  X,  Y,  Z are independent (non-colinear) vectors. Subtraction version of second equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 37007 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v  |-  V  =  ( Base `  W
)
baerlem3.m  |-  .-  =  ( -g `  W )
baerlem3.o  |-  .0.  =  ( 0g `  W )
baerlem3.s  |-  .(+)  =  (
LSSum `  W )
baerlem3.n  |-  N  =  ( LSpan `  W )
baerlem3.w  |-  ( ph  ->  W  e.  LVec )
baerlem3.x  |-  ( ph  ->  X  e.  V )
baerlem3.c  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
baerlem3.d  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
baerlem3.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
baerlem3.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
baerlem5a.p  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
baerlem5bmN  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( ( ( N `
 { Y }
)  .(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  ( Y  .-  Z ) ) } )  .(+)  ( N `  { X } ) ) ) )

Proof of Theorem baerlem5bmN
StepHypRef Expression
1 baerlem3.y . . . . . 6  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
21eldifad 3586 . . . . 5  |-  ( ph  ->  Y  e.  V )
3 baerlem3.z . . . . . 6  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
43eldifad 3586 . . . . 5  |-  ( ph  ->  Z  e.  V )
5 baerlem3.v . . . . . 6  |-  V  =  ( Base `  W
)
6 baerlem5a.p . . . . . 6  |-  .+  =  ( +g  `  W )
7 eqid 2622 . . . . . 6  |-  ( invg `  W )  =  ( invg `  W )
8 baerlem3.m . . . . . 6  |-  .-  =  ( -g `  W )
95, 6, 7, 8grpsubval 17465 . . . . 5  |-  ( ( Y  e.  V  /\  Z  e.  V )  ->  ( Y  .-  Z
)  =  ( Y 
.+  ( ( invg `  W ) `
 Z ) ) )
102, 4, 9syl2anc 693 . . . 4  |-  ( ph  ->  ( Y  .-  Z
)  =  ( Y 
.+  ( ( invg `  W ) `
 Z ) ) )
1110sneqd 4189 . . 3  |-  ( ph  ->  { ( Y  .-  Z ) }  =  { ( Y  .+  ( ( invg `  W ) `  Z
) ) } )
1211fveq2d 6195 . 2  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( N `  {
( Y  .+  (
( invg `  W ) `  Z
) ) } ) )
13 baerlem3.o . . 3  |-  .0.  =  ( 0g `  W )
14 baerlem3.s . . 3  |-  .(+)  =  (
LSSum `  W )
15 baerlem3.n . . 3  |-  N  =  ( LSpan `  W )
16 baerlem3.w . . 3  |-  ( ph  ->  W  e.  LVec )
17 baerlem3.x . . 3  |-  ( ph  ->  X  e.  V )
18 lveclmod 19106 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
1916, 18syl 17 . . . . 5  |-  ( ph  ->  W  e.  LMod )
205, 7lmodvnegcl 18904 . . . . 5  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  (
( invg `  W ) `  Z
)  e.  V )
2119, 4, 20syl2anc 693 . . . 4  |-  ( ph  ->  ( ( invg `  W ) `  Z
)  e.  V )
22 eqid 2622 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
235, 22, 15, 19, 2, 4lspprcl 18978 . . . . . 6  |-  ( ph  ->  ( N `  { Y ,  Z }
)  e.  ( LSubSp `  W ) )
24 baerlem3.c . . . . . 6  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
255, 13, 22, 19, 23, 17, 24lssneln0 18952 . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
265, 15, 16, 17, 2, 4, 24lspindpi 19132 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
2726simpld 475 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
285, 13, 15, 16, 25, 2, 27lspsnne1 19117 . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y } ) )
29 baerlem3.d . . . . . . . 8  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
3029necomd 2849 . . . . . . 7  |-  ( ph  ->  ( N `  { Z } )  =/=  ( N `  { Y } ) )
315, 13, 15, 16, 3, 2, 30lspsnne1 19117 . . . . . 6  |-  ( ph  ->  -.  Z  e.  ( N `  { Y } ) )
325, 15, 16, 17, 4, 2, 31, 24lspexchn2 19131 . . . . 5  |-  ( ph  ->  -.  Z  e.  ( N `  { Y ,  X } ) )
33 lmodgrp 18870 . . . . . . . . 9  |-  ( W  e.  LMod  ->  W  e. 
Grp )
3419, 33syl 17 . . . . . . . 8  |-  ( ph  ->  W  e.  Grp )
3534adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  W  e.  Grp )
364adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  Z  e.  V )
375, 7grpinvinv 17482 . . . . . . 7  |-  ( ( W  e.  Grp  /\  Z  e.  V )  ->  ( ( invg `  W ) `  (
( invg `  W ) `  Z
) )  =  Z )
3835, 36, 37syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  (
( invg `  W ) `  (
( invg `  W ) `  Z
) )  =  Z )
3919adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  W  e.  LMod )
405, 22, 15, 19, 2, 17lspprcl 18978 . . . . . . . 8  |-  ( ph  ->  ( N `  { Y ,  X }
)  e.  ( LSubSp `  W ) )
4140adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  ( N `  { Y ,  X } )  e.  ( LSubSp `  W )
)
42 simpr 477 . . . . . . 7  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  (
( invg `  W ) `  Z
)  e.  ( N `
 { Y ,  X } ) )
4322, 7lssvnegcl 18956 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( N `  { Y ,  X } )  e.  ( LSubSp `  W )  /\  ( ( invg `  W ) `  Z
)  e.  ( N `
 { Y ,  X } ) )  -> 
( ( invg `  W ) `  (
( invg `  W ) `  Z
) )  e.  ( N `  { Y ,  X } ) )
4439, 41, 42, 43syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  (
( invg `  W ) `  (
( invg `  W ) `  Z
) )  e.  ( N `  { Y ,  X } ) )
4538, 44eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  Z  e.  ( N `  { Y ,  X }
) )
4632, 45mtand 691 . . . 4  |-  ( ph  ->  -.  ( ( invg `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )
475, 15, 16, 21, 17, 2, 28, 46lspexchn2 19131 . . 3  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  ( ( invg `  W ) `
 Z ) } ) )
485, 7, 15lspsnneg 19006 . . . . 5  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  ( N `  { (
( invg `  W ) `  Z
) } )  =  ( N `  { Z } ) )
4919, 4, 48syl2anc 693 . . . 4  |-  ( ph  ->  ( N `  {
( ( invg `  W ) `  Z
) } )  =  ( N `  { Z } ) )
5029, 49neeqtrrd 2868 . . 3  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { (
( invg `  W ) `  Z
) } ) )
515, 13, 7grpinvnzcl 17487 . . . 4  |-  ( ( W  e.  Grp  /\  Z  e.  ( V  \  {  .0.  } ) )  ->  ( ( invg `  W ) `
 Z )  e.  ( V  \  {  .0.  } ) )
5234, 3, 51syl2anc 693 . . 3  |-  ( ph  ->  ( ( invg `  W ) `  Z
)  e.  ( V 
\  {  .0.  }
) )
535, 8, 13, 14, 15, 16, 17, 47, 50, 1, 52, 6baerlem5b 37004 . 2  |-  ( ph  ->  ( N `  {
( Y  .+  (
( invg `  W ) `  Z
) ) } )  =  ( ( ( N `  { Y } )  .(+)  ( N `
 { ( ( invg `  W
) `  Z ) } ) )  i^i  ( ( N `  { ( X  .-  ( Y  .+  ( ( invg `  W
) `  Z )
) ) } ) 
.(+)  ( N `  { X } ) ) ) )
5449oveq2d 6666 . . 3  |-  ( ph  ->  ( ( N `  { Y } )  .(+)  ( N `  { ( ( invg `  W ) `  Z
) } ) )  =  ( ( N `
 { Y }
)  .(+)  ( N `  { Z } ) ) )
5510eqcomd 2628 . . . . . . 7  |-  ( ph  ->  ( Y  .+  (
( invg `  W ) `  Z
) )  =  ( Y  .-  Z ) )
5655oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( X  .-  ( Y  .+  ( ( invg `  W ) `
 Z ) ) )  =  ( X 
.-  ( Y  .-  Z ) ) )
5756sneqd 4189 . . . . 5  |-  ( ph  ->  { ( X  .-  ( Y  .+  ( ( invg `  W
) `  Z )
) ) }  =  { ( X  .-  ( Y  .-  Z ) ) } )
5857fveq2d 6195 . . . 4  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  ( ( invg `  W ) `
 Z ) ) ) } )  =  ( N `  {
( X  .-  ( Y  .-  Z ) ) } ) )
5958oveq1d 6665 . . 3  |-  ( ph  ->  ( ( N `  { ( X  .-  ( Y  .+  ( ( invg `  W
) `  Z )
) ) } ) 
.(+)  ( N `  { X } ) )  =  ( ( N `
 { ( X 
.-  ( Y  .-  Z ) ) } )  .(+)  ( N `  { X } ) ) )
6054, 59ineq12d 3815 . 2  |-  ( ph  ->  ( ( ( N `
 { Y }
)  .(+)  ( N `  { ( ( invg `  W ) `
 Z ) } ) )  i^i  (
( N `  {
( X  .-  ( Y  .+  ( ( invg `  W ) `
 Z ) ) ) } )  .(+)  ( N `  { X } ) ) )  =  ( ( ( N `  { Y } )  .(+)  ( N `
 { Z }
) )  i^i  (
( N `  {
( X  .-  ( Y  .-  Z ) ) } )  .(+)  ( N `
 { X }
) ) ) )
6112, 53, 603eqtrd 2660 1  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( ( ( N `
 { Y }
)  .(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  ( Y  .-  Z ) ) } )  .(+)  ( N `  { X } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    i^i cin 3573   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424   LSSumclsm 18049   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator