| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 11025 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 11043 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 11031 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 12871 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Copyright terms: Public domain | W3C validator |