MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolydif Structured version   Visualization version   GIF version

Theorem bpolydif 14786
Description: Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.)
Assertion
Ref Expression
bpolydif ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))

Proof of Theorem bpolydif
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . 6 (𝑛 = 𝑘 → (𝑛 BernPoly (𝑋 + 1)) = (𝑘 BernPoly (𝑋 + 1)))
2 oveq1 6657 . . . . . 6 (𝑛 = 𝑘 → (𝑛 BernPoly 𝑋) = (𝑘 BernPoly 𝑋))
31, 2oveq12d 6668 . . . . 5 (𝑛 = 𝑘 → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)))
4 id 22 . . . . . 6 (𝑛 = 𝑘𝑛 = 𝑘)
5 oveq1 6657 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 − 1) = (𝑘 − 1))
65oveq2d 6666 . . . . . 6 (𝑛 = 𝑘 → (𝑋↑(𝑛 − 1)) = (𝑋↑(𝑘 − 1)))
74, 6oveq12d 6668 . . . . 5 (𝑛 = 𝑘 → (𝑛 · (𝑋↑(𝑛 − 1))) = (𝑘 · (𝑋↑(𝑘 − 1))))
83, 7eqeq12d 2637 . . . 4 (𝑛 = 𝑘 → (((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))) ↔ ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))))
98imbi2d 330 . . 3 (𝑛 = 𝑘 → ((𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))))))
10 oveq1 6657 . . . . . 6 (𝑛 = 𝑁 → (𝑛 BernPoly (𝑋 + 1)) = (𝑁 BernPoly (𝑋 + 1)))
11 oveq1 6657 . . . . . 6 (𝑛 = 𝑁 → (𝑛 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
1210, 11oveq12d 6668 . . . . 5 (𝑛 = 𝑁 → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)))
13 id 22 . . . . . 6 (𝑛 = 𝑁𝑛 = 𝑁)
14 oveq1 6657 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
1514oveq2d 6666 . . . . . 6 (𝑛 = 𝑁 → (𝑋↑(𝑛 − 1)) = (𝑋↑(𝑁 − 1)))
1613, 15oveq12d 6668 . . . . 5 (𝑛 = 𝑁 → (𝑛 · (𝑋↑(𝑛 − 1))) = (𝑁 · (𝑋↑(𝑁 − 1))))
1712, 16eqeq12d 2637 . . . 4 (𝑛 = 𝑁 → (((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))) ↔ ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))))
1817imbi2d 330 . . 3 (𝑛 = 𝑁 → ((𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))))
19 simp1 1061 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → 𝑛 ∈ ℕ)
20 simp3 1063 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
21 simpl3 1066 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → 𝑋 ∈ ℂ)
22 oveq1 6657 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 BernPoly (𝑋 + 1)) = (𝑚 BernPoly (𝑋 + 1)))
23 oveq1 6657 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 BernPoly 𝑋) = (𝑚 BernPoly 𝑋))
2422, 23oveq12d 6668 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)))
25 id 22 . . . . . . . . . . 11 (𝑘 = 𝑚𝑘 = 𝑚)
26 oveq1 6657 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑘 − 1) = (𝑚 − 1))
2726oveq2d 6666 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑋↑(𝑘 − 1)) = (𝑋↑(𝑚 − 1)))
2825, 27oveq12d 6668 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘 · (𝑋↑(𝑘 − 1))) = (𝑚 · (𝑋↑(𝑚 − 1))))
2924, 28eqeq12d 2637 . . . . . . . . 9 (𝑘 = 𝑚 → (((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))) ↔ ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
3029imbi2d 330 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1))))))
3130rspccva 3308 . . . . . . 7 ((∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
32313ad2antl2 1224 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
3321, 32mpd 15 . . . . 5 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1))))
3419, 20, 33bpolydiflem 14785 . . . 4 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))))
35343exp 1264 . . 3 (𝑛 ∈ ℕ → (∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) → (𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))))))
369, 18, 35nnsinds 12787 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ℂ → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))))
3736imp 445 1 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  cn 11020  ...cfz 12326  cexp 12860   BernPoly cbp 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-bpoly 14778
This theorem is referenced by:  fsumkthpow  14787
  Copyright terms: Public domain W3C validator