MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth Structured version   Visualization version   GIF version

Theorem ccatopth 13470
Description: An opth 4945-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
ccatopth (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 6657 . . . 4 ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩))
2 swrdccat1 13457 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = 𝐴)
323ad2ant1 1082 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = 𝐴)
4 simp3 1063 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → (#‘𝐴) = (#‘𝐶))
54opeq2d 4409 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ⟨0, (#‘𝐴)⟩ = ⟨0, (#‘𝐶)⟩)
65oveq2d 6666 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩) = ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐶)⟩))
7 swrdccat1 13457 . . . . . . 7 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐶)⟩) = 𝐶)
873ad2ant2 1083 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐶)⟩) = 𝐶)
96, 8eqtrd 2656 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩) = 𝐶)
103, 9eqeq12d 2637 . . . 4 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → (((𝐴 ++ 𝐵) substr ⟨0, (#‘𝐴)⟩) = ((𝐶 ++ 𝐷) substr ⟨0, (#‘𝐴)⟩) ↔ 𝐴 = 𝐶))
111, 10syl5ib 234 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐴 = 𝐶))
12 simpr 477 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
13 simpl3 1066 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘𝐴) = (#‘𝐶))
1412fveq2d 6195 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘(𝐴 ++ 𝐵)) = (#‘(𝐶 ++ 𝐷)))
15 simpl1 1064 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋))
16 ccatlen 13360 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
1715, 16syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
18 simpl2 1065 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋))
19 ccatlen 13360 . . . . . . . . 9 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → (#‘(𝐶 ++ 𝐷)) = ((#‘𝐶) + (#‘𝐷)))
2018, 19syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (#‘(𝐶 ++ 𝐷)) = ((#‘𝐶) + (#‘𝐷)))
2114, 17, 203eqtr3d 2664 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((#‘𝐴) + (#‘𝐵)) = ((#‘𝐶) + (#‘𝐷)))
2213, 21opeq12d 4410 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩ = ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩)
2312, 22oveq12d 6668 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩) = ((𝐶 ++ 𝐷) substr ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩))
24 swrdccat2 13458 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) substr ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩) = 𝐵)
2515, 24syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(#‘𝐴), ((#‘𝐴) + (#‘𝐵))⟩) = 𝐵)
26 swrdccat2 13458 . . . . . 6 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) substr ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩) = 𝐷)
2718, 26syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐶 ++ 𝐷) substr ⟨(#‘𝐶), ((#‘𝐶) + (#‘𝐷))⟩) = 𝐷)
2823, 25, 273eqtr3d 2664 . . . 4 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → 𝐵 = 𝐷)
2928ex 450 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐵 = 𝐷))
3011, 29jcad 555 . 2 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
31 oveq12 6659 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
3230, 31impbid1 215 1 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (#‘𝐴) = (#‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cop 4183  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  ccatopth2  13471  ccatlcan  13472  splval2  13508  s2eq2s1eq  13681  s3eqs2s1eq  13683  efgredleme  18156  efgredlemc  18158
  Copyright terms: Public domain W3C validator