Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsupd Structured version   Visualization version   GIF version

Theorem climliminflimsupd 40033
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsupd.1 (𝜑𝑀 ∈ ℤ)
climliminflimsupd.2 𝑍 = (ℤ𝑀)
climliminflimsupd.3 (𝜑𝐹:𝑍⟶ℝ)
climliminflimsupd.4 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climliminflimsupd (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))

Proof of Theorem climliminflimsupd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 climliminflimsupd.3 . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
21feqmptd 6249 . . . . . 6 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
32fveq2d 6195 . . . . 5 (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))))
4 climliminflimsupd.2 . . . . . . . . 9 𝑍 = (ℤ𝑀)
54fvexi 6202 . . . . . . . 8 𝑍 ∈ V
65mptex 6486 . . . . . . 7 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
7 liminfcl 39995 . . . . . . 7 ((𝑘𝑍 ↦ (𝐹𝑘)) ∈ V → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
86, 7ax-mp 5 . . . . . 6 (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*
98a1i 11 . . . . 5 (𝜑 → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
103, 9eqeltrd 2701 . . . 4 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 nfv 1843 . . . . . . 7 𝑘𝜑
12 climliminflimsupd.1 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
131ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413renegcld 10457 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1511, 12, 4, 14limsupvaluz4 40032 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))))
16 climrel 14223 . . . . . . . . . 10 Rel ⇝
1716a1i 11 . . . . . . . . 9 (𝜑 → Rel ⇝ )
18 nfcv 2764 . . . . . . . . . 10 𝑘𝐹
19 climliminflimsupd.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ⇝ )
2012, 4, 1climlimsup 39992 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹)))
2119, 20mpbid 222 . . . . . . . . . 10 (𝜑𝐹 ⇝ (lim sup‘𝐹))
2213recnd 10068 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2311, 18, 4, 12, 21, 22climneg 39842 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹))
24 releldm 5358 . . . . . . . . 9 ((Rel ⇝ ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2517, 23, 24syl2anc 693 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
26 eqid 2622 . . . . . . . . . 10 (𝑘𝑍 ↦ -(𝐹𝑘)) = (𝑘𝑍 ↦ -(𝐹𝑘))
2714, 26fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
2812, 4, 27climlimsup 39992 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ ↔ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘)))))
2925, 28mpbid 222 . . . . . . 7 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
30 climuni 14283 . . . . . . 7 (((𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3129, 23, 30syl2anc 693 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3222negnegd 10383 . . . . . . . . . 10 ((𝜑𝑘𝑍) → --(𝐹𝑘) = (𝐹𝑘))
3332mpteq2dva 4744 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘)))
3433, 2eqtr4d 2659 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = 𝐹)
3534fveq2d 6195 . . . . . . 7 (𝜑 → (lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = (lim inf‘𝐹))
3635xnegeqd 39664 . . . . . 6 (𝜑 → -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = -𝑒(lim inf‘𝐹))
3715, 31, 363eqtr3d 2664 . . . . 5 (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹))
384, 12, 21, 13climrecl 14314 . . . . . 6 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
3938renegcld 10457 . . . . 5 (𝜑 → -(lim sup‘𝐹) ∈ ℝ)
4037, 39eqeltrrd 2702 . . . 4 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ)
41 xnegrecl2 39690 . . . 4 (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
4210, 40, 41syl2anc 693 . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
4342recnd 10068 . 2 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
4438recnd 10068 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
4542rexnegd 39334 . . 3 (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹))
4637, 45eqtr2d 2657 . 2 (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹))
4743, 44, 46neg11d 10404 1 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  cmpt 4729  dom cdm 5114  Rel wrel 5119  wf 5884  cfv 5888  cr 9935  *cxr 10073  -cneg 10267  cz 11377  cuz 11687  -𝑒cxne 11943  lim supclsp 14201  cli 14215  lim infclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-liminf 39984
This theorem is referenced by:  climliminf  40038  climliminflimsup  40040  climliminflimsup2  40041
  Copyright terms: Public domain W3C validator