Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsupd Structured version   Visualization version   Unicode version

Theorem climliminflimsupd 40033
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsupd.1  |-  ( ph  ->  M  e.  ZZ )
climliminflimsupd.2  |-  Z  =  ( ZZ>= `  M )
climliminflimsupd.3  |-  ( ph  ->  F : Z --> RR )
climliminflimsupd.4  |-  ( ph  ->  F  e.  dom  ~~>  )
Assertion
Ref Expression
climliminflimsupd  |-  ( ph  ->  (liminf `  F )  =  ( limsup `  F
) )

Proof of Theorem climliminflimsupd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 climliminflimsupd.3 . . . . . . 7  |-  ( ph  ->  F : Z --> RR )
21feqmptd 6249 . . . . . 6  |-  ( ph  ->  F  =  ( k  e.  Z  |->  ( F `
 k ) ) )
32fveq2d 6195 . . . . 5  |-  ( ph  ->  (liminf `  F )  =  (liminf `  ( k  e.  Z  |->  ( F `
 k ) ) ) )
4 climliminflimsupd.2 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
54fvexi 6202 . . . . . . . 8  |-  Z  e. 
_V
65mptex 6486 . . . . . . 7  |-  ( k  e.  Z  |->  ( F `
 k ) )  e.  _V
7 liminfcl 39995 . . . . . . 7  |-  ( ( k  e.  Z  |->  ( F `  k ) )  e.  _V  ->  (liminf `  ( k  e.  Z  |->  ( F `  k
) ) )  e. 
RR* )
86, 7ax-mp 5 . . . . . 6  |-  (liminf `  ( k  e.  Z  |->  ( F `  k
) ) )  e. 
RR*
98a1i 11 . . . . 5  |-  ( ph  ->  (liminf `  ( k  e.  Z  |->  ( F `
 k ) ) )  e.  RR* )
103, 9eqeltrd 2701 . . . 4  |-  ( ph  ->  (liminf `  F )  e.  RR* )
11 nfv 1843 . . . . . . 7  |-  F/ k
ph
12 climliminflimsupd.1 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
131ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
1413renegcld 10457 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  -u ( F `  k )  e.  RR )
1511, 12, 4, 14limsupvaluz4 40032 . . . . . 6  |-  ( ph  ->  ( limsup `  ( k  e.  Z  |->  -u ( F `  k )
) )  =  -e (liminf `  ( k  e.  Z  |->  -u -u ( F `  k )
) ) )
16 climrel 14223 . . . . . . . . . 10  |-  Rel  ~~>
1716a1i 11 . . . . . . . . 9  |-  ( ph  ->  Rel  ~~>  )
18 nfcv 2764 . . . . . . . . . 10  |-  F/_ k F
19 climliminflimsupd.4 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  dom  ~~>  )
2012, 4, 1climlimsup 39992 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  dom  ~~>  <->  F  ~~>  ( limsup `  F )
) )
2119, 20mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  F  ~~>  ( limsup `  F
) )
2213recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
2311, 18, 4, 12, 21, 22climneg 39842 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  -u ( limsup `
 F ) )
24 releldm 5358 . . . . . . . . 9  |-  ( ( Rel  ~~>  /\  ( k  e.  Z  |->  -u ( F `  k )
)  ~~>  -u ( limsup `  F
) )  ->  (
k  e.  Z  |->  -u ( F `  k ) )  e.  dom  ~~>  )
2517, 23, 24syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  e. 
dom 
~~>  )
26 eqid 2622 . . . . . . . . . 10  |-  ( k  e.  Z  |->  -u ( F `  k )
)  =  ( k  e.  Z  |->  -u ( F `  k )
)
2714, 26fmptd 6385 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) ) : Z --> RR )
2812, 4, 27climlimsup 39992 . . . . . . . 8  |-  ( ph  ->  ( ( k  e.  Z  |->  -u ( F `  k ) )  e. 
dom 
~~> 
<->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) ) ) )
2925, 28mpbid 222 . . . . . . 7  |-  ( ph  ->  ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) ) )
30 climuni 14283 . . . . . . 7  |-  ( ( ( k  e.  Z  |-> 
-u ( F `  k ) )  ~~>  ( limsup `  ( k  e.  Z  |-> 
-u ( F `  k ) ) )  /\  ( k  e.  Z  |->  -u ( F `  k ) )  ~~>  -u ( limsup `
 F ) )  ->  ( limsup `  (
k  e.  Z  |->  -u ( F `  k ) ) )  =  -u ( limsup `  F )
)
3129, 23, 30syl2anc 693 . . . . . 6  |-  ( ph  ->  ( limsup `  ( k  e.  Z  |->  -u ( F `  k )
) )  =  -u ( limsup `  F )
)
3222negnegd 10383 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  -u -u ( F `  k )  =  ( F `  k ) )
3332mpteq2dva 4744 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  Z  |-> 
-u -u ( F `  k ) )  =  ( k  e.  Z  |->  ( F `  k
) ) )
3433, 2eqtr4d 2659 . . . . . . . 8  |-  ( ph  ->  ( k  e.  Z  |-> 
-u -u ( F `  k ) )  =  F )
3534fveq2d 6195 . . . . . . 7  |-  ( ph  ->  (liminf `  ( k  e.  Z  |->  -u -u ( F `  k )
) )  =  (liminf `  F ) )
3635xnegeqd 39664 . . . . . 6  |-  ( ph  -> 
-e (liminf `  ( k  e.  Z  |-> 
-u -u ( F `  k ) ) )  =  -e (liminf `  F ) )
3715, 31, 363eqtr3d 2664 . . . . 5  |-  ( ph  -> 
-u ( limsup `  F
)  =  -e
(liminf `  F )
)
384, 12, 21, 13climrecl 14314 . . . . . 6  |-  ( ph  ->  ( limsup `  F )  e.  RR )
3938renegcld 10457 . . . . 5  |-  ( ph  -> 
-u ( limsup `  F
)  e.  RR )
4037, 39eqeltrrd 2702 . . . 4  |-  ( ph  -> 
-e (liminf `  F )  e.  RR )
41 xnegrecl2 39690 . . . 4  |-  ( ( (liminf `  F )  e.  RR*  /\  -e
(liminf `  F )  e.  RR )  ->  (liminf `  F )  e.  RR )
4210, 40, 41syl2anc 693 . . 3  |-  ( ph  ->  (liminf `  F )  e.  RR )
4342recnd 10068 . 2  |-  ( ph  ->  (liminf `  F )  e.  CC )
4438recnd 10068 . 2  |-  ( ph  ->  ( limsup `  F )  e.  CC )
4542rexnegd 39334 . . 3  |-  ( ph  -> 
-e (liminf `  F )  =  -u (liminf `  F ) )
4637, 45eqtr2d 2657 . 2  |-  ( ph  -> 
-u (liminf `  F )  =  -u ( limsup `  F
) )
4743, 44, 46neg11d 10404 1  |-  ( ph  ->  (liminf `  F )  =  ( limsup `  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   Rel wrel 5119   -->wf 5884   ` cfv 5888   RRcr 9935   RR*cxr 10073   -ucneg 10267   ZZcz 11377   ZZ>=cuz 11687    -ecxne 11943   limsupclsp 14201    ~~> cli 14215  liminfclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-liminf 39984
This theorem is referenced by:  climliminf  40038  climliminflimsup  40040  climliminflimsup2  40041
  Copyright terms: Public domain W3C validator