![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climub | Structured version Visualization version GIF version |
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climub.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climub.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climub.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climub.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
Ref | Expression |
---|---|
climub | ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | climub.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | clim2ser.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | syl6eleq 2711 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 11697 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
8 | 7 | eleq1d 2686 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
9 | 8 | imbi2d 330 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑁) ∈ ℝ))) |
10 | climub.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | expcom 451 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
12 | 9, 11 | vtoclga 3272 | . . 3 ⊢ (𝑁 ∈ 𝑍 → (𝜑 → (𝐹‘𝑁) ∈ ℝ)) |
13 | 2, 12 | mpcom 38 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
14 | climub.3 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
15 | 3 | uztrn2 11705 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
16 | 2, 15 | sylan 488 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ 𝑍) |
17 | fveq2 6191 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
18 | 17 | eleq1d 2686 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑗) ∈ ℝ)) |
19 | 18 | imbi2d 330 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘𝑗) ∈ ℝ))) |
20 | 19, 11 | vtoclga 3272 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝐹‘𝑗) ∈ ℝ)) |
21 | 20 | impcom 446 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
22 | 16, 21 | syldan 487 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑗) ∈ ℝ) |
23 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝑗 ∈ (ℤ≥‘𝑁)) | |
24 | elfzuz 12338 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
25 | 3 | uztrn2 11705 | . . . . . . 7 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
26 | 2, 25 | sylan 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
27 | 26, 10 | syldan 487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
28 | 24, 27 | sylan2 491 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
29 | 28 | adantlr 751 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
30 | elfzuz 12338 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑗 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | climub.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
32 | 26, 31 | syldan 487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
33 | 30, 32 | sylan2 491 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
34 | 33 | adantlr 751 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑗 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
35 | 23, 29, 34 | monoord 12831 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ≤ (𝐹‘𝑗)) |
36 | 1, 6, 13, 14, 22, 35 | climlec2 14389 | 1 ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 1c1 9937 + caddc 9939 ≤ cle 10075 − cmin 10266 ℤcz 11377 ℤ≥cuz 11687 ...cfz 12326 ⇝ cli 14215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 |
This theorem is referenced by: climserle 14393 itg2i1fseqle 23521 emcllem7 24728 |
Copyright terms: Public domain | W3C validator |