MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climserle Structured version   Visualization version   GIF version

Theorem climserle 14393
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climserle.2 (𝜑𝑁𝑍)
climserle.3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
climserle.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climserle.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climserle (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climserle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 climserle.2 . 2 (𝜑𝑁𝑍)
3 climserle.3 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
42, 1syl6eleq 2711 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 11692 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
7 climserle.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
81, 6, 7serfre 12830 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
98ffvelrnda 6359 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
101peano2uzs 11742 . . . . 5 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
11 fveq2 6191 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
1211breq2d 4665 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1))))
1312imbi2d 330 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))))
14 climserle.5 . . . . . . . 8 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
1514expcom 451 . . . . . . 7 (𝑘𝑍 → (𝜑 → 0 ≤ (𝐹𝑘)))
1613, 15vtoclga 3272 . . . . . 6 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))
1716impcom 446 . . . . 5 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
1810, 17sylan2 491 . . . 4 ((𝜑𝑗𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
1911eleq1d 2686 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ))
2019imbi2d 330 . . . . . . . 8 (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)))
217expcom 451 . . . . . . . 8 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
2220, 21vtoclga 3272 . . . . . . 7 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))
2322impcom 446 . . . . . 6 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
2410, 23sylan2 491 . . . . 5 ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
259, 24addge01d 10615 . . . 4 ((𝜑𝑗𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))))
2618, 25mpbid 222 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
27 simpr 477 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
2827, 1syl6eleq 2711 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
29 seqp1 12816 . . . 4 (𝑗 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
3028, 29syl 17 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
3126, 30breqtrrd 4681 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
321, 2, 3, 9, 31climub 14392 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cz 11377  cuz 11687  seqcseq 12801  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  isumrpcl  14575  ege2le3  14820  prmreclem6  15625  ioombl1lem4  23329  rge0scvg  29995
  Copyright terms: Public domain W3C validator