Proof of Theorem poimirlem22
| Step | Hyp | Ref
| Expression |
| 1 | | poimir.0 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
𝑁 ∈
ℕ) |
| 3 | | poimirlem22.s |
. . . 4
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
| 4 | | poimirlem22.1 |
. . . . 5
⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁))) |
| 5 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁))) |
| 6 | | poimirlem22.2 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
𝑇 ∈ 𝑆) |
| 8 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(2nd ‘𝑇)
∈ (1...(𝑁 −
1))) |
| 9 | 2, 3, 5, 7, 8 | poimirlem15 33424 |
. . 3
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
〈〈(1st ‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉 ∈ 𝑆) |
| 10 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
| 11 | 10 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
| 12 | 11 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
| 13 | 12 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 14 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑇 → (1st ‘𝑡) = (1st ‘𝑇)) |
| 15 | 14 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
| 16 | 14 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
| 17 | 16 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
| 18 | 17 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
| 19 | 16 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
| 20 | 19 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 21 | 18, 20 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 22 | 15, 21 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 23 | 22 | csbeq2dv 3992 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 24 | 13, 23 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 25 | 24 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 26 | 25 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 27 | 26, 3 | elrab2 3366 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 28 | 27 | simprbi 480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 29 | 6, 28 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 31 | | elrabi 3359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 32 | 31, 3 | eleq2s 2719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 33 | 6, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 34 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 36 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 38 | | elmapi 7879 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 40 | | elfzoelz 12470 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (0..^𝐾) → 𝑛 ∈ ℤ) |
| 41 | 40 | ssriv 3607 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝐾) ⊆
ℤ |
| 42 | | fss 6056 |
. . . . . . . . . . . . . . . 16
⊢
(((1st ‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶ℤ) |
| 43 | 39, 41, 42 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶ℤ) |
| 44 | 43 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(1st ‘(1st ‘𝑇)):(1...𝑁)⟶ℤ) |
| 45 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 46 | 35, 45 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 47 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
| 48 | | f1oeq1 6127 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 49 | 47, 48 | elab 3350 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 50 | 46, 49 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 51 | 50 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 52 | 2, 30, 44, 51, 8 | poimirlem1 33410 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
¬ ∃*𝑛 ∈
(1...𝑁)((𝐹‘((2nd ‘𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑇))‘𝑛)) |
| 53 | 52 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑇))‘𝑛)) |
| 54 | 1 | ad3antrrr 766 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) → 𝑁 ∈
ℕ) |
| 55 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑧 → (2nd ‘𝑡) = (2nd ‘𝑧)) |
| 56 | 55 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑧 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑧))) |
| 57 | 56 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑧 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑧), 𝑦, (𝑦 + 1))) |
| 58 | 57 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑧 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 59 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑧 → (1st ‘𝑡) = (1st ‘𝑧)) |
| 60 | 59 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑧 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑧))) |
| 61 | 59 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑧 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑧))) |
| 62 | 61 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑧 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑧)) “
(1...𝑗))) |
| 63 | 62 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑧 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1})) |
| 64 | 61 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑧 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑧)) “ ((𝑗 + 1)...𝑁))) |
| 65 | 64 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑧 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 66 | 63, 65 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑧 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 67 | 60, 66 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑧 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 68 | 67 | csbeq2dv 3992 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑧 → ⦋if(𝑦 < (2nd ‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 69 | 58, 68 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑧 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 70 | 69 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑧 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 71 | 70 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑧 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 72 | 71, 3 | elrab2 3366 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 73 | 72 | simprbi 480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 74 | 73 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 75 | | elrabi 3359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 76 | 75, 3 | eleq2s 2719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 77 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑧) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 79 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑧) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑧)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑆 → (1st
‘(1st ‘𝑧)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 81 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘(1st ‘𝑧)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶(0..^𝐾)) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶(0..^𝐾)) |
| 83 | | fss 6056 |
. . . . . . . . . . . . . . . . 17
⊢
(((1st ‘(1st ‘𝑧)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶ℤ) |
| 84 | 82, 41, 83 | sylancl 694 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶ℤ) |
| 85 | 84 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) →
(1st ‘(1st ‘𝑧)):(1...𝑁)⟶ℤ) |
| 86 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑧) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑧)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 87 | 78, 86 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 → (2nd
‘(1st ‘𝑧)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 88 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘(1st ‘𝑧)) ∈ V |
| 89 | | f1oeq1 6127 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (2nd
‘(1st ‘𝑧)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 90 | 88, 89 | elab 3350 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑧)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 91 | 87, 90 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → (2nd
‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 92 | 91 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) →
(2nd ‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 93 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) →
(2nd ‘𝑇)
∈ (1...(𝑁 −
1))) |
| 94 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑧) ∈ (0...𝑁)) |
| 95 | 76, 94 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 → (2nd ‘𝑧) ∈ (0...𝑁)) |
| 96 | 95 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (2nd ‘𝑧) ∈ (0...𝑁)) |
| 97 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑧) ∈ ((0...𝑁) ∖ {(2nd ‘𝑇)}) ↔ ((2nd
‘𝑧) ∈ (0...𝑁) ∧ (2nd
‘𝑧) ≠
(2nd ‘𝑇))) |
| 98 | 97 | biimpri 218 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘𝑧) ∈ (0...𝑁) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) →
(2nd ‘𝑧)
∈ ((0...𝑁) ∖
{(2nd ‘𝑇)})) |
| 99 | 96, 98 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) →
(2nd ‘𝑧)
∈ ((0...𝑁) ∖
{(2nd ‘𝑇)})) |
| 100 | 54, 74, 85, 92, 93, 99 | poimirlem2 33411 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ≠ (2nd
‘𝑇)) →
∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑇))‘𝑛)) |
| 101 | 100 | ex 450 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → ((2nd ‘𝑧) ≠ (2nd
‘𝑇) →
∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑇))‘𝑛))) |
| 102 | 101 | necon1bd 2812 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑇))‘𝑛) → (2nd ‘𝑧) = (2nd ‘𝑇))) |
| 103 | 53, 102 | mpd 15 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (2nd ‘𝑧) = (2nd ‘𝑇)) |
| 104 | | eleq1 2689 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑧) = (2nd ‘𝑇) → ((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) ↔ (2nd
‘𝑇) ∈
(1...(𝑁 −
1)))) |
| 105 | 104 | biimparc 504 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) ∧ (2nd
‘𝑧) = (2nd
‘𝑇)) →
(2nd ‘𝑧)
∈ (1...(𝑁 −
1))) |
| 106 | 105 | anim2i 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((2nd
‘𝑇) ∈
(1...(𝑁 − 1)) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇)))
→ (𝜑 ∧
(2nd ‘𝑧)
∈ (1...(𝑁 −
1)))) |
| 107 | 106 | anassrs 680 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇))
→ (𝜑 ∧
(2nd ‘𝑧)
∈ (1...(𝑁 −
1)))) |
| 108 | 73 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 109 | | breq1 4656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 0 → (𝑦 < (2nd ‘𝑧) ↔ 0 < (2nd
‘𝑧))) |
| 110 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 0 → 𝑦 = 0) |
| 111 | 109, 110 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 0 → if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) = if(0 < (2nd
‘𝑧), 0, (𝑦 + 1))) |
| 112 | | elfznn 12370 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) → (2nd
‘𝑧) ∈
ℕ) |
| 113 | 112 | nngt0d 11064 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) → 0 < (2nd
‘𝑧)) |
| 114 | 113 | iftrued 4094 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) → if(0 <
(2nd ‘𝑧),
0, (𝑦 + 1)) =
0) |
| 115 | 114 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → if(0 < (2nd
‘𝑧), 0, (𝑦 + 1)) = 0) |
| 116 | 111, 115 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑦 = 0) → if(𝑦 < (2nd ‘𝑧), 𝑦, (𝑦 + 1)) = 0) |
| 117 | 116 | csbeq1d 3540 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑦 = 0) → ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋0 / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 118 | | c0ex 10034 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
| 119 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 0 → (1...𝑗) = (1...0)) |
| 120 | | fz10 12362 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1...0) =
∅ |
| 121 | 119, 120 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 0 → (1...𝑗) = ∅) |
| 122 | 121 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 0 → ((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑧)) “
∅)) |
| 123 | 122 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → (((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑧)) “ ∅) ×
{1})) |
| 124 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 0 → (𝑗 + 1) = (0 + 1)) |
| 125 | | 0p1e1 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 + 1) =
1 |
| 126 | 124, 125 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 0 → (𝑗 + 1) = 1) |
| 127 | 126 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 0 → ((𝑗 + 1)...𝑁) = (1...𝑁)) |
| 128 | 127 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 0 → ((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑧)) “
(1...𝑁))) |
| 129 | 128 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) |
| 130 | 123, 129 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 0 → ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑧)) “ ∅) × {1}) ∪
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0}))) |
| 131 | | ima0 5481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((2nd ‘(1st ‘𝑧)) “ ∅) =
∅ |
| 132 | 131 | xpeq1i 5135 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘(1st ‘𝑧)) “ ∅) × {1}) = (∅
× {1}) |
| 133 | | 0xp 5199 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
× {1}) = ∅ |
| 134 | 132, 133 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2nd ‘(1st ‘𝑧)) “ ∅) × {1}) =
∅ |
| 135 | 134 | uneq1i 3763 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((2nd ‘(1st ‘𝑧)) “ ∅) × {1}) ∪
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) = (∅ ∪
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) |
| 136 | | uncom 3757 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∅
∪ (((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑧)) “ (1...𝑁)) × {0}) ∪
∅) |
| 137 | | un0 3967 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0}) ∪ ∅) =
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0}) |
| 138 | 135, 136,
137 | 3eqtri 2648 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((2nd ‘(1st ‘𝑧)) “ ∅) × {1}) ∪
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) = (((2nd
‘(1st ‘𝑧)) “ (1...𝑁)) × {0}) |
| 139 | 130, 138 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 0 → ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((2nd
‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) |
| 140 | 139 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 0 → ((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑧)) ∘𝑓 +
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0}))) |
| 141 | 118, 140 | csbie 3559 |
. . . . . . . . . . . . . . . . 17
⊢
⦋0 / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑧)) ∘𝑓 +
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) |
| 142 | | f1ofo 6144 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2nd ‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑧)):(1...𝑁)–onto→(1...𝑁)) |
| 143 | 91, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑆 → (2nd
‘(1st ‘𝑧)):(1...𝑁)–onto→(1...𝑁)) |
| 144 | | foima 6120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((2nd ‘(1st ‘𝑧)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑧)) “ (1...𝑁)) = (1...𝑁)) |
| 145 | 143, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑆 → ((2nd
‘(1st ‘𝑧)) “ (1...𝑁)) = (1...𝑁)) |
| 146 | 145 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑆 → (((2nd
‘(1st ‘𝑧)) “ (1...𝑁)) × {0}) = ((1...𝑁) × {0})) |
| 147 | 146 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑆 → ((1st
‘(1st ‘𝑧)) ∘𝑓 +
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) = ((1st
‘(1st ‘𝑧)) ∘𝑓 + ((1...𝑁) ×
{0}))) |
| 148 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑆 → (1...𝑁) ∈ V) |
| 149 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘(1st ‘𝑧)):(1...𝑁)⟶(0..^𝐾) → (1st
‘(1st ‘𝑧)) Fn (1...𝑁)) |
| 150 | 82, 149 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑆 → (1st
‘(1st ‘𝑧)) Fn (1...𝑁)) |
| 151 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
V → ((1...𝑁) ×
{0}) Fn (1...𝑁)) |
| 152 | 118, 151 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑆 → ((1...𝑁) × {0}) Fn (1...𝑁)) |
| 153 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑧))‘𝑛) = ((1st ‘(1st
‘𝑧))‘𝑛)) |
| 154 | 118 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0) |
| 155 | 154 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0) |
| 156 | 82 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑧))‘𝑛) ∈ (0..^𝐾)) |
| 157 | | elfzonn0 12512 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1st ‘(1st ‘𝑧))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑧))‘𝑛) ∈
ℕ0) |
| 158 | 156, 157 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑧))‘𝑛) ∈
ℕ0) |
| 159 | 158 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑧))‘𝑛) ∈ ℂ) |
| 160 | 159 | addid1d 10236 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑧))‘𝑛) + 0) = ((1st
‘(1st ‘𝑧))‘𝑛)) |
| 161 | 148, 150,
152, 150, 153, 155, 160 | offveq 6918 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑆 → ((1st
‘(1st ‘𝑧)) ∘𝑓 + ((1...𝑁) × {0})) =
(1st ‘(1st ‘𝑧))) |
| 162 | 147, 161 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 → ((1st
‘(1st ‘𝑧)) ∘𝑓 +
(((2nd ‘(1st ‘𝑧)) “ (1...𝑁)) × {0})) = (1st
‘(1st ‘𝑧))) |
| 163 | 141, 162 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → ⦋0 / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (1st
‘(1st ‘𝑧))) |
| 164 | 163 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑦 = 0) → ⦋0 / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (1st
‘(1st ‘𝑧))) |
| 165 | 117, 164 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑦 = 0) → ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘𝑓 +
((((2nd ‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (1st
‘(1st ‘𝑧))) |
| 166 | | nnm1nn0 11334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 167 | 1, 166 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
| 168 | | 0elfz 12436 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 1) ∈
ℕ0 → 0 ∈ (0...(𝑁 − 1))) |
| 169 | 167, 168 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈ (0...(𝑁 − 1))) |
| 170 | 169 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → 0 ∈ (0...(𝑁 − 1))) |
| 171 | | fvexd 6203 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (1st
‘(1st ‘𝑧)) ∈ V) |
| 172 | 108, 165,
170, 171 | fvmptd 6288 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝐹‘0) = (1st
‘(1st ‘𝑧))) |
| 173 | 107, 172 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇))
∧ 𝑧 ∈ 𝑆) → (𝐹‘0) = (1st
‘(1st ‘𝑧))) |
| 174 | 173 | an32s 846 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) = (2nd ‘𝑇)) → (𝐹‘0) = (1st
‘(1st ‘𝑧))) |
| 175 | 103, 174 | mpdan 702 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝐹‘0) = (1st
‘(1st ‘𝑧))) |
| 176 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑇 → (2nd ‘𝑧) = (2nd ‘𝑇)) |
| 177 | 176 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑇 → ((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) ↔ (2nd
‘𝑇) ∈
(1...(𝑁 −
1)))) |
| 178 | 177 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑇 → ((𝜑 ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) ↔ (𝜑 ∧ (2nd ‘𝑇) ∈ (1...(𝑁 − 1))))) |
| 179 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑇 → (1st ‘𝑧) = (1st ‘𝑇)) |
| 180 | 179 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑇 → (1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇))) |
| 181 | 180 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑇 → ((𝐹‘0) = (1st
‘(1st ‘𝑧)) ↔ (𝐹‘0) = (1st
‘(1st ‘𝑇)))) |
| 182 | 178, 181 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑇 → (((𝜑 ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st
‘(1st ‘𝑧))) ↔ ((𝜑 ∧ (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st
‘(1st ‘𝑇))))) |
| 183 | 172 | expcom 451 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑆 → ((𝜑 ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st
‘(1st ‘𝑧)))) |
| 184 | 182, 183 | vtoclga 3272 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ 𝑆 → ((𝜑 ∧ (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st
‘(1st ‘𝑇)))) |
| 185 | 7, 184 | mpcom 38 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(𝐹‘0) =
(1st ‘(1st ‘𝑇))) |
| 186 | 185 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝐹‘0) = (1st
‘(1st ‘𝑇))) |
| 187 | 175, 186 | eqtr3d 2658 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇))) |
| 188 | 187 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → (1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇))) |
| 189 | 1 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → 𝑁 ∈ ℕ) |
| 190 | 6 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → 𝑇 ∈ 𝑆) |
| 191 | | simpllr 799 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → (2nd ‘𝑇) ∈ (1...(𝑁 − 1))) |
| 192 | | simplr 792 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → 𝑧 ∈ 𝑆) |
| 193 | 35 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(1st ‘𝑇)
∈ (((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 194 | | xpopth 7207 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑧) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = (2nd ‘(1st
‘𝑇))) ↔
(1st ‘𝑧) =
(1st ‘𝑇))) |
| 195 | 78, 193, 194 | syl2anr 495 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = (2nd ‘(1st
‘𝑇))) ↔
(1st ‘𝑧) =
(1st ‘𝑇))) |
| 196 | 33 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
𝑇 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 197 | | xpopth 7207 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st ‘𝑧) = (1st ‘𝑇) ∧ (2nd
‘𝑧) = (2nd
‘𝑇)) ↔ 𝑧 = 𝑇)) |
| 198 | 197 | biimpd 219 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st ‘𝑧) = (1st ‘𝑇) ∧ (2nd
‘𝑧) = (2nd
‘𝑇)) → 𝑧 = 𝑇)) |
| 199 | 76, 196, 198 | syl2anr 495 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (((1st ‘𝑧) = (1st ‘𝑇) ∧ (2nd
‘𝑧) = (2nd
‘𝑇)) → 𝑧 = 𝑇)) |
| 200 | 103, 199 | mpan2d 710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → ((1st ‘𝑧) = (1st ‘𝑇) → 𝑧 = 𝑇)) |
| 201 | 195, 200 | sylbid 230 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = (2nd ‘(1st
‘𝑇))) → 𝑧 = 𝑇)) |
| 202 | 187, 201 | mpand 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → ((2nd
‘(1st ‘𝑧)) = (2nd ‘(1st
‘𝑇)) → 𝑧 = 𝑇)) |
| 203 | 202 | necon3d 2815 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝑧 ≠ 𝑇 → (2nd
‘(1st ‘𝑧)) ≠ (2nd
‘(1st ‘𝑇)))) |
| 204 | 203 | imp 445 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → (2nd
‘(1st ‘𝑧)) ≠ (2nd
‘(1st ‘𝑇))) |
| 205 | 189, 3, 190, 191, 192, 204 | poimirlem9 33418 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → (2nd
‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))))) |
| 206 | 103 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → (2nd ‘𝑧) = (2nd ‘𝑇)) |
| 207 | 188, 205,
206 | jca31 557 |
. . . . . . 7
⊢ ((((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) ∧ 𝑧 ≠ 𝑇) → (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇))) |
| 208 | 207 | ex 450 |
. . . . . 6
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝑧 ≠ 𝑇 → (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇)))) |
| 209 | | simplr 792 |
. . . . . . . 8
⊢
((((1st ‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇))
→ (2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))))) |
| 210 | | elfznn 12370 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) → (2nd
‘𝑇) ∈
ℕ) |
| 211 | 210 | nnred 11035 |
. . . . . . . . . . . . 13
⊢
((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) → (2nd
‘𝑇) ∈
ℝ) |
| 212 | 211 | ltp1d 10954 |
. . . . . . . . . . . . 13
⊢
((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) → (2nd
‘𝑇) <
((2nd ‘𝑇)
+ 1)) |
| 213 | 211, 212 | ltned 10173 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) → (2nd
‘𝑇) ≠
((2nd ‘𝑇)
+ 1)) |
| 214 | 213 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(2nd ‘𝑇)
≠ ((2nd ‘𝑇) + 1)) |
| 215 | | fveq1 6190 |
. . . . . . . . . . . . 13
⊢
((2nd ‘(1st ‘𝑇)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)})))) →
((2nd ‘(1st ‘𝑇))‘(2nd ‘𝑇)) = (((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇))) |
| 216 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2nd ‘𝑇) ∈ ℝ → (2nd
‘𝑇) ∈
ℝ) |
| 217 | | ltp1 10861 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2nd ‘𝑇) ∈ ℝ → (2nd
‘𝑇) <
((2nd ‘𝑇)
+ 1)) |
| 218 | 216, 217 | ltned 10173 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((2nd ‘𝑇) ∈ ℝ → (2nd
‘𝑇) ≠
((2nd ‘𝑇)
+ 1)) |
| 219 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(2nd ‘𝑇) ∈ V |
| 220 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2nd ‘𝑇) + 1) ∈ V |
| 221 | 219, 220,
220, 219 | fpr 6421 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((2nd ‘𝑇) ≠ ((2nd ‘𝑇) + 1) →
{〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉}:{(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}⟶{((2nd
‘𝑇) + 1),
(2nd ‘𝑇)}) |
| 222 | 218, 221 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑇) ∈ ℝ →
{〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉}:{(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}⟶{((2nd
‘𝑇) + 1),
(2nd ‘𝑇)}) |
| 223 | | f1oi 6174 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( I
↾ ((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})):((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})–1-1-onto→((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}) |
| 224 | | f1of 6137 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (( I
↾ ((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})):((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})–1-1-onto→((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}) → ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})):((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})⟶((1...𝑁)
∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) |
| 225 | 223, 224 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( I
↾ ((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})):((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})⟶((1...𝑁)
∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}) |
| 226 | | disjdif 4040 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) =
∅ |
| 227 | | fun 6066 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉}:{(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}⟶{((2nd
‘𝑇) + 1),
(2nd ‘𝑇)}
∧ ( I ↾ ((1...𝑁)
∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})):((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})⟶((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)})) ∧
({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) = ∅) →
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))):({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) +
1)}))⟶({((2nd ‘𝑇) + 1), (2nd ‘𝑇)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) |
| 228 | 226, 227 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉}:{(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}⟶{((2nd
‘𝑇) + 1),
(2nd ‘𝑇)}
∧ ( I ↾ ((1...𝑁)
∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})):((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})⟶((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)})) →
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))):({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) +
1)}))⟶({((2nd ‘𝑇) + 1), (2nd ‘𝑇)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) |
| 229 | 222, 225,
228 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑇) ∈ ℝ →
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))):({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) +
1)}))⟶({((2nd ‘𝑇) + 1), (2nd ‘𝑇)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) |
| 230 | 219 | prid1 4297 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘𝑇) ∈ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} |
| 231 | | elun1 3780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑇) ∈ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} → (2nd
‘𝑇) ∈
({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) |
| 232 | 230, 231 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(2nd ‘𝑇) ∈ ({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)})) |
| 233 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . 19
⊢
((({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))):({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) +
1)}))⟶({((2nd ‘𝑇) + 1), (2nd ‘𝑇)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) ∧ (2nd
‘𝑇) ∈
({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}))) →
(((2nd ‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇)) = ((2nd ‘(1st
‘𝑇))‘(({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))‘(2nd ‘𝑇)))) |
| 234 | 229, 232,
233 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑇) ∈ ℝ → (((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇)) = ((2nd ‘(1st
‘𝑇))‘(({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))‘(2nd ‘𝑇)))) |
| 235 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉}:{(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}⟶{((2nd
‘𝑇) + 1),
(2nd ‘𝑇)}
→ {〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} Fn {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}) |
| 236 | 222, 235 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((2nd ‘𝑇) ∈ ℝ →
{〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} Fn {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}) |
| 237 | | fnresi 6008 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( I
↾ ((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})) Fn ((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}) |
| 238 | 226, 230 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) = ∅ ∧
(2nd ‘𝑇)
∈ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)}) |
| 239 | | fvun1 6269 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} Fn {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∧ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})) Fn ((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}) ∧ (({(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) = ∅ ∧
(2nd ‘𝑇)
∈ {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)})) → (({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))‘(2nd ‘𝑇)) = ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉}‘(2nd
‘𝑇))) |
| 240 | 237, 238,
239 | mp3an23 1416 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} Fn {(2nd ‘𝑇), ((2nd ‘𝑇) + 1)} →
(({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)})))‘(2nd ‘𝑇)) = ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉}‘(2nd
‘𝑇))) |
| 241 | 236, 240 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑇) ∈ ℝ →
(({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)})))‘(2nd ‘𝑇)) = ({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉}‘(2nd
‘𝑇))) |
| 242 | 219, 220 | fvpr1 6456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((2nd ‘𝑇) ≠ ((2nd ‘𝑇) + 1) →
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉}‘(2nd ‘𝑇)) = ((2nd
‘𝑇) +
1)) |
| 243 | 218, 242 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑇) ∈ ℝ →
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉}‘(2nd ‘𝑇)) = ((2nd
‘𝑇) +
1)) |
| 244 | 241, 243 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑇) ∈ ℝ →
(({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)})))‘(2nd ‘𝑇)) = ((2nd ‘𝑇) + 1)) |
| 245 | 244 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑇) ∈ ℝ → ((2nd
‘(1st ‘𝑇))‘(({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))‘(2nd ‘𝑇))) = ((2nd
‘(1st ‘𝑇))‘((2nd ‘𝑇) + 1))) |
| 246 | 234, 245 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑇) ∈ ℝ → (((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇)) = ((2nd ‘(1st
‘𝑇))‘((2nd ‘𝑇) + 1))) |
| 247 | 211, 246 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇)) = ((2nd ‘(1st
‘𝑇))‘((2nd ‘𝑇) + 1))) |
| 248 | 247 | eqeq2d 2632 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇))‘(2nd ‘𝑇)) = (((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇)) ↔ ((2nd
‘(1st ‘𝑇))‘(2nd ‘𝑇)) = ((2nd
‘(1st ‘𝑇))‘((2nd ‘𝑇) + 1)))) |
| 249 | 248 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(((2nd ‘(1st ‘𝑇))‘(2nd ‘𝑇)) = (((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇)) ↔ ((2nd
‘(1st ‘𝑇))‘(2nd ‘𝑇)) = ((2nd
‘(1st ‘𝑇))‘((2nd ‘𝑇) + 1)))) |
| 250 | | f1of1 6136 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1→(1...𝑁)) |
| 251 | 50, 250 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1→(1...𝑁)) |
| 252 | 251 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1→(1...𝑁)) |
| 253 | 1 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 254 | | npcan1 10455 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 255 | 253, 254 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 256 | 167 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 257 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 258 | 256, 257 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 259 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 260 | 258, 259 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 261 | 255, 260 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 262 | | fzss2 12381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 263 | 261, 262 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 264 | 263 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(2nd ‘𝑇)
∈ (1...𝑁)) |
| 265 | | fzp1elp1 12394 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑇) ∈ (1...(𝑁 − 1)) → ((2nd
‘𝑇) + 1) ∈
(1...((𝑁 − 1) +
1))) |
| 266 | 265 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
((2nd ‘𝑇)
+ 1) ∈ (1...((𝑁
− 1) + 1))) |
| 267 | 255 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 268 | 267 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(1...((𝑁 − 1) + 1)) =
(1...𝑁)) |
| 269 | 266, 268 | eleqtrd 2703 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
((2nd ‘𝑇)
+ 1) ∈ (1...𝑁)) |
| 270 | | f1veqaeq 6514 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1→(1...𝑁) ∧ ((2nd ‘𝑇) ∈ (1...𝑁) ∧ ((2nd ‘𝑇) + 1) ∈ (1...𝑁))) → (((2nd
‘(1st ‘𝑇))‘(2nd ‘𝑇)) = ((2nd
‘(1st ‘𝑇))‘((2nd ‘𝑇) + 1)) → (2nd
‘𝑇) =
((2nd ‘𝑇)
+ 1))) |
| 271 | 252, 264,
269, 270 | syl12anc 1324 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(((2nd ‘(1st ‘𝑇))‘(2nd ‘𝑇)) = ((2nd
‘(1st ‘𝑇))‘((2nd ‘𝑇) + 1)) → (2nd
‘𝑇) =
((2nd ‘𝑇)
+ 1))) |
| 272 | 249, 271 | sylbid 230 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(((2nd ‘(1st ‘𝑇))‘(2nd ‘𝑇)) = (((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))‘(2nd ‘𝑇)) → (2nd ‘𝑇) = ((2nd
‘𝑇) +
1))) |
| 273 | 215, 272 | syl5 34 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
((2nd ‘(1st ‘𝑇)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)})))) →
(2nd ‘𝑇) =
((2nd ‘𝑇)
+ 1))) |
| 274 | 273 | necon3d 2815 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
((2nd ‘𝑇)
≠ ((2nd ‘𝑇) + 1) → (2nd
‘(1st ‘𝑇)) ≠ ((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))))) |
| 275 | 214, 274 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(2nd ‘(1st ‘𝑇)) ≠ ((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))) |
| 276 | 179 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑇 → (2nd
‘(1st ‘𝑧)) = (2nd ‘(1st
‘𝑇))) |
| 277 | 276 | neeq1d 2853 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑇 → ((2nd
‘(1st ‘𝑧)) ≠ ((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))) ↔ (2nd ‘(1st ‘𝑇)) ≠ ((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))))) |
| 278 | 275, 277 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
(𝑧 = 𝑇 → (2nd
‘(1st ‘𝑧)) ≠ ((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)})))))) |
| 279 | 278 | necon2d 2817 |
. . . . . . . 8
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
((2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)})))) →
𝑧 ≠ 𝑇)) |
| 280 | 209, 279 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
((((1st ‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇))
→ 𝑧 ≠ 𝑇)) |
| 281 | 280 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → ((((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇))
→ 𝑧 ≠ 𝑇)) |
| 282 | 208, 281 | impbid 202 |
. . . . 5
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝑧 ≠ 𝑇 ↔ (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇)))) |
| 283 | | eqop 7208 |
. . . . . . . 8
⊢ (𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (𝑧 = 〈〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉 ↔ ((1st ‘𝑧) = 〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉
∧ (2nd ‘𝑧) = (2nd ‘𝑇)))) |
| 284 | | eqop 7208 |
. . . . . . . . . 10
⊢
((1st ‘𝑧) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ((1st ‘𝑧) = 〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉
↔ ((1st ‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))))))) |
| 285 | 77, 284 | syl 17 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → ((1st ‘𝑧) = 〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉
↔ ((1st ‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) +
1)}))))))) |
| 286 | 285 | anbi1d 741 |
. . . . . . . 8
⊢ (𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (((1st ‘𝑧) = 〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉
∧ (2nd ‘𝑧) = (2nd ‘𝑇)) ↔ (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇)))) |
| 287 | 283, 286 | bitrd 268 |
. . . . . . 7
⊢ (𝑧 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (𝑧 = 〈〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉 ↔ (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇)))) |
| 288 | 76, 287 | syl 17 |
. . . . . 6
⊢ (𝑧 ∈ 𝑆 → (𝑧 = 〈〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉 ↔ (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇)))) |
| 289 | 288 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝑧 = 〈〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉 ↔ (((1st
‘(1st ‘𝑧)) = (1st ‘(1st
‘𝑇)) ∧
(2nd ‘(1st ‘𝑧)) = ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))) ∧
(2nd ‘𝑧) =
(2nd ‘𝑇)))) |
| 290 | 282, 289 | bitr4d 271 |
. . . 4
⊢ (((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ∧
𝑧 ∈ 𝑆) → (𝑧 ≠ 𝑇 ↔ 𝑧 = 〈〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉)) |
| 291 | 290 | ralrimiva 2966 |
. . 3
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
∀𝑧 ∈ 𝑆 (𝑧 ≠ 𝑇 ↔ 𝑧 = 〈〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉)) |
| 292 | | reu6i 3397 |
. . 3
⊢
((〈〈(1st ‘(1st ‘𝑇)), ((2nd
‘(1st ‘𝑇)) ∘ ({〈(2nd
‘𝑇), ((2nd
‘𝑇) + 1)〉,
〈((2nd ‘𝑇) + 1), (2nd ‘𝑇)〉} ∪ ( I ↾
((1...𝑁) ∖
{(2nd ‘𝑇),
((2nd ‘𝑇)
+ 1)}))))〉, (2nd ‘𝑇)〉 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 (𝑧 ≠ 𝑇 ↔ 𝑧 = 〈〈(1st
‘(1st ‘𝑇)), ((2nd ‘(1st
‘𝑇)) ∘
({〈(2nd ‘𝑇), ((2nd ‘𝑇) + 1)〉, 〈((2nd
‘𝑇) + 1),
(2nd ‘𝑇)〉} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd
‘𝑇), ((2nd
‘𝑇) + 1)}))))〉,
(2nd ‘𝑇)〉)) → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
| 293 | 9, 291, 292 | syl2anc 693 |
. 2
⊢ ((𝜑 ∧ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
| 294 | | xp2nd 7199 |
. . . . . . 7
⊢ (𝑇 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑇) ∈ (0...𝑁)) |
| 295 | 33, 294 | syl 17 |
. . . . . 6
⊢ (𝜑 → (2nd
‘𝑇) ∈ (0...𝑁)) |
| 296 | 295 | biantrurd 529 |
. . . . 5
⊢ (𝜑 → (¬ (2nd
‘𝑇) ∈
(1...(𝑁 − 1)) ↔
((2nd ‘𝑇)
∈ (0...𝑁) ∧ ¬
(2nd ‘𝑇)
∈ (1...(𝑁 −
1))))) |
| 297 | 1 | nnnn0d 11351 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 298 | | nn0uz 11722 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 299 | 297, 298 | syl6eleq 2711 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 300 | | fzpred 12389 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) |
| 301 | 299, 300 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) |
| 302 | 125 | oveq1i 6660 |
. . . . . . . . . . 11
⊢ ((0 +
1)...𝑁) = (1...𝑁) |
| 303 | 302 | uneq2i 3764 |
. . . . . . . . . 10
⊢ ({0}
∪ ((0 + 1)...𝑁)) = ({0}
∪ (1...𝑁)) |
| 304 | 301, 303 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝜑 → (0...𝑁) = ({0} ∪ (1...𝑁))) |
| 305 | 304 | difeq1d 3727 |
. . . . . . . 8
⊢ (𝜑 → ((0...𝑁) ∖ (1...(𝑁 − 1))) = (({0} ∪ (1...𝑁)) ∖ (1...(𝑁 − 1)))) |
| 306 | | difundir 3880 |
. . . . . . . . . 10
⊢ (({0}
∪ (1...𝑁)) ∖
(1...(𝑁 − 1))) =
(({0} ∖ (1...(𝑁
− 1))) ∪ ((1...𝑁)
∖ (1...(𝑁 −
1)))) |
| 307 | | 0lt1 10550 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
| 308 | | 0re 10040 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 309 | | 1re 10039 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 310 | 308, 309 | ltnlei 10158 |
. . . . . . . . . . . . . 14
⊢ (0 < 1
↔ ¬ 1 ≤ 0) |
| 311 | 307, 310 | mpbi 220 |
. . . . . . . . . . . . 13
⊢ ¬ 1
≤ 0 |
| 312 | | elfzle1 12344 |
. . . . . . . . . . . . 13
⊢ (0 ∈
(1...(𝑁 − 1)) →
1 ≤ 0) |
| 313 | 311, 312 | mto 188 |
. . . . . . . . . . . 12
⊢ ¬ 0
∈ (1...(𝑁 −
1)) |
| 314 | | incom 3805 |
. . . . . . . . . . . . . 14
⊢
((1...(𝑁 − 1))
∩ {0}) = ({0} ∩ (1...(𝑁 − 1))) |
| 315 | 314 | eqeq1i 2627 |
. . . . . . . . . . . . 13
⊢
(((1...(𝑁 −
1)) ∩ {0}) = ∅ ↔ ({0} ∩ (1...(𝑁 − 1))) = ∅) |
| 316 | | disjsn 4246 |
. . . . . . . . . . . . 13
⊢
(((1...(𝑁 −
1)) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (1...(𝑁 − 1))) |
| 317 | | disj3 4021 |
. . . . . . . . . . . . 13
⊢ (({0}
∩ (1...(𝑁 − 1)))
= ∅ ↔ {0} = ({0} ∖ (1...(𝑁 − 1)))) |
| 318 | 315, 316,
317 | 3bitr3i 290 |
. . . . . . . . . . . 12
⊢ (¬ 0
∈ (1...(𝑁 − 1))
↔ {0} = ({0} ∖ (1...(𝑁 − 1)))) |
| 319 | 313, 318 | mpbi 220 |
. . . . . . . . . . 11
⊢ {0} =
({0} ∖ (1...(𝑁
− 1))) |
| 320 | 319 | uneq1i 3763 |
. . . . . . . . . 10
⊢ ({0}
∪ ((1...𝑁) ∖
(1...(𝑁 − 1)))) =
(({0} ∖ (1...(𝑁
− 1))) ∪ ((1...𝑁)
∖ (1...(𝑁 −
1)))) |
| 321 | 306, 320 | eqtr4i 2647 |
. . . . . . . . 9
⊢ (({0}
∪ (1...𝑁)) ∖
(1...(𝑁 − 1))) = ({0}
∪ ((1...𝑁) ∖
(1...(𝑁 −
1)))) |
| 322 | | difundir 3880 |
. . . . . . . . . . . 12
⊢
(((1...(𝑁 −
1)) ∪ {𝑁}) ∖
(1...(𝑁 − 1))) =
(((1...(𝑁 − 1))
∖ (1...(𝑁 −
1))) ∪ ({𝑁} ∖
(1...(𝑁 −
1)))) |
| 323 | | difid 3948 |
. . . . . . . . . . . . 13
⊢
((1...(𝑁 − 1))
∖ (1...(𝑁 −
1))) = ∅ |
| 324 | 323 | uneq1i 3763 |
. . . . . . . . . . . 12
⊢
(((1...(𝑁 −
1)) ∖ (1...(𝑁 −
1))) ∪ ({𝑁} ∖
(1...(𝑁 − 1)))) =
(∅ ∪ ({𝑁} ∖
(1...(𝑁 −
1)))) |
| 325 | | uncom 3757 |
. . . . . . . . . . . . 13
⊢ (∅
∪ ({𝑁} ∖
(1...(𝑁 − 1)))) =
(({𝑁} ∖ (1...(𝑁 − 1))) ∪
∅) |
| 326 | | un0 3967 |
. . . . . . . . . . . . 13
⊢ (({𝑁} ∖ (1...(𝑁 − 1))) ∪ ∅) =
({𝑁} ∖ (1...(𝑁 − 1))) |
| 327 | 325, 326 | eqtri 2644 |
. . . . . . . . . . . 12
⊢ (∅
∪ ({𝑁} ∖
(1...(𝑁 − 1)))) =
({𝑁} ∖ (1...(𝑁 − 1))) |
| 328 | 322, 324,
327 | 3eqtri 2648 |
. . . . . . . . . . 11
⊢
(((1...(𝑁 −
1)) ∪ {𝑁}) ∖
(1...(𝑁 − 1))) =
({𝑁} ∖ (1...(𝑁 − 1))) |
| 329 | | nnuz 11723 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
| 330 | 1, 329 | syl6eleq 2711 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 331 | 255, 330 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
| 332 | | fzsplit2 12366 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 333 | 331, 261,
332 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 334 | 255 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
| 335 | 1 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 336 | | fzsn 12383 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
| 337 | 335, 336 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
| 338 | 334, 337 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
| 339 | 338 | uneq2d 3767 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 340 | 333, 339 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 341 | 340 | difeq1d 3727 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1...𝑁) ∖ (1...(𝑁 − 1))) = (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ (1...(𝑁 − 1)))) |
| 342 | 1 | nnred 11035 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 343 | 342 | ltm1d 10956 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
| 344 | 167 | nn0red 11352 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 345 | 344, 342 | ltnled 10184 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
| 346 | 343, 345 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
| 347 | | elfzle2 12345 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
| 348 | 346, 347 | nsyl 135 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
| 349 | | incom 3805 |
. . . . . . . . . . . . . 14
⊢
((1...(𝑁 − 1))
∩ {𝑁}) = ({𝑁} ∩ (1...(𝑁 − 1))) |
| 350 | 349 | eqeq1i 2627 |
. . . . . . . . . . . . 13
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ({𝑁} ∩
(1...(𝑁 − 1))) =
∅) |
| 351 | | disjsn 4246 |
. . . . . . . . . . . . 13
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
| 352 | | disj3 4021 |
. . . . . . . . . . . . 13
⊢ (({𝑁} ∩ (1...(𝑁 − 1))) = ∅ ↔ {𝑁} = ({𝑁} ∖ (1...(𝑁 − 1)))) |
| 353 | 350, 351,
352 | 3bitr3i 290 |
. . . . . . . . . . . 12
⊢ (¬
𝑁 ∈ (1...(𝑁 − 1)) ↔ {𝑁} = ({𝑁} ∖ (1...(𝑁 − 1)))) |
| 354 | 348, 353 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑁} = ({𝑁} ∖ (1...(𝑁 − 1)))) |
| 355 | 328, 341,
354 | 3eqtr4a 2682 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...𝑁) ∖ (1...(𝑁 − 1))) = {𝑁}) |
| 356 | 355 | uneq2d 3767 |
. . . . . . . . 9
⊢ (𝜑 → ({0} ∪ ((1...𝑁) ∖ (1...(𝑁 − 1)))) = ({0} ∪
{𝑁})) |
| 357 | 321, 356 | syl5eq 2668 |
. . . . . . . 8
⊢ (𝜑 → (({0} ∪ (1...𝑁)) ∖ (1...(𝑁 − 1))) = ({0} ∪
{𝑁})) |
| 358 | 305, 357 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → ((0...𝑁) ∖ (1...(𝑁 − 1))) = ({0} ∪ {𝑁})) |
| 359 | 358 | eleq2d 2687 |
. . . . . 6
⊢ (𝜑 → ((2nd
‘𝑇) ∈
((0...𝑁) ∖
(1...(𝑁 − 1))) ↔
(2nd ‘𝑇)
∈ ({0} ∪ {𝑁}))) |
| 360 | | eldif 3584 |
. . . . . 6
⊢
((2nd ‘𝑇) ∈ ((0...𝑁) ∖ (1...(𝑁 − 1))) ↔ ((2nd
‘𝑇) ∈ (0...𝑁) ∧ ¬ (2nd
‘𝑇) ∈
(1...(𝑁 −
1)))) |
| 361 | | elun 3753 |
. . . . . . 7
⊢
((2nd ‘𝑇) ∈ ({0} ∪ {𝑁}) ↔ ((2nd ‘𝑇) ∈ {0} ∨
(2nd ‘𝑇)
∈ {𝑁})) |
| 362 | 219 | elsn 4192 |
. . . . . . . 8
⊢
((2nd ‘𝑇) ∈ {0} ↔ (2nd
‘𝑇) =
0) |
| 363 | 219 | elsn 4192 |
. . . . . . . 8
⊢
((2nd ‘𝑇) ∈ {𝑁} ↔ (2nd ‘𝑇) = 𝑁) |
| 364 | 362, 363 | orbi12i 543 |
. . . . . . 7
⊢
(((2nd ‘𝑇) ∈ {0} ∨ (2nd
‘𝑇) ∈ {𝑁}) ↔ ((2nd
‘𝑇) = 0 ∨
(2nd ‘𝑇) =
𝑁)) |
| 365 | 361, 364 | bitri 264 |
. . . . . 6
⊢
((2nd ‘𝑇) ∈ ({0} ∪ {𝑁}) ↔ ((2nd ‘𝑇) = 0 ∨ (2nd
‘𝑇) = 𝑁)) |
| 366 | 359, 360,
365 | 3bitr3g 302 |
. . . . 5
⊢ (𝜑 → (((2nd
‘𝑇) ∈ (0...𝑁) ∧ ¬ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) ↔
((2nd ‘𝑇)
= 0 ∨ (2nd ‘𝑇) = 𝑁))) |
| 367 | 296, 366 | bitrd 268 |
. . . 4
⊢ (𝜑 → (¬ (2nd
‘𝑇) ∈
(1...(𝑁 − 1)) ↔
((2nd ‘𝑇)
= 0 ∨ (2nd ‘𝑇) = 𝑁))) |
| 368 | 367 | biimpa 501 |
. . 3
⊢ ((𝜑 ∧ ¬ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
((2nd ‘𝑇)
= 0 ∨ (2nd ‘𝑇) = 𝑁)) |
| 369 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 0) → 𝑁 ∈
ℕ) |
| 370 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 0) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁))) |
| 371 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 0) → 𝑇 ∈ 𝑆) |
| 372 | | poimirlem22.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) |
| 373 | 372 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ (2nd
‘𝑇) = 0) ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 𝐾) |
| 374 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 0) →
(2nd ‘𝑇) =
0) |
| 375 | 369, 3, 370, 371, 373, 374 | poimirlem18 33427 |
. . . 4
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 0) →
∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
| 376 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 𝑁) → 𝑁 ∈ ℕ) |
| 377 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 𝑁) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁))) |
| 378 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 𝑁) → 𝑇 ∈ 𝑆) |
| 379 | | poimirlem22.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) |
| 380 | 379 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ (2nd
‘𝑇) = 𝑁) ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) |
| 381 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 𝑁) → (2nd
‘𝑇) = 𝑁) |
| 382 | 376, 3, 377, 378, 380, 381 | poimirlem21 33430 |
. . . 4
⊢ ((𝜑 ∧ (2nd
‘𝑇) = 𝑁) → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
| 383 | 375, 382 | jaodan 826 |
. . 3
⊢ ((𝜑 ∧ ((2nd
‘𝑇) = 0 ∨
(2nd ‘𝑇) =
𝑁)) → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
| 384 | 368, 383 | syldan 487 |
. 2
⊢ ((𝜑 ∧ ¬ (2nd
‘𝑇) ∈
(1...(𝑁 − 1))) →
∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
| 385 | 293, 384 | pm2.61dan 832 |
1
⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |