| Step | Hyp | Ref
| Expression |
| 1 | | ttgval.n |
. . . . 5
⊢ 𝐺 = (toTG‘𝐻) |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → 𝐺 = (toTG‘𝐻)) |
| 3 | | elex 3212 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → 𝐻 ∈ V) |
| 4 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻)) |
| 5 | | ttgval.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐻) |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵) |
| 7 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝐻 → (-g‘𝑤) = (-g‘𝐻)) |
| 8 | | ttgval.m |
. . . . . . . . . . . . . 14
⊢ − =
(-g‘𝐻) |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (-g‘𝑤) = − ) |
| 10 | 9 | oveqd 6667 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → (𝑧(-g‘𝑤)𝑥) = (𝑧 − 𝑥)) |
| 11 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝐻 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝐻)) |
| 12 | | ttgval.s |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝐻) |
| 13 | 11, 12 | syl6eqr 2674 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (
·𝑠 ‘𝑤) = · ) |
| 14 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → 𝑘 = 𝑘) |
| 15 | 9 | oveqd 6667 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (𝑦(-g‘𝑤)𝑥) = (𝑦 − 𝑥)) |
| 16 | 13, 14, 15 | oveq123d 6671 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) = (𝑘 · (𝑦 − 𝑥))) |
| 17 | 10, 16 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐻 → ((𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) ↔ (𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
| 18 | 17 | rexbidv 3052 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
| 19 | 6, 18 | rabeqbidv 3195 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
| 20 | 6, 6, 19 | mpt2eq123dv 6717 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 21 | 20 | csbeq1d 3540 |
. . . . . . 7
⊢ (𝑤 = 𝐻 → ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 22 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → (𝑤 sSet 〈(Itv‘ndx), 𝑖〉) = (𝐻 sSet 〈(Itv‘ndx), 𝑖〉)) |
| 23 | | rabeq 3192 |
. . . . . . . . . . . 12
⊢
((Base‘𝑤) =
𝐵 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) |
| 24 | 6, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) |
| 25 | 6, 6, 24 | mpt2eq123dv 6717 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})) |
| 26 | 25 | opeq2d 4409 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) |
| 27 | 22, 26 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → ((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 28 | 27 | csbeq2dv 3992 |
. . . . . . 7
⊢ (𝑤 = 𝐻 → ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 29 | 21, 28 | eqtrd 2656 |
. . . . . 6
⊢ (𝑤 = 𝐻 → ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 30 | | df-ttg 25754 |
. . . . . 6
⊢ toTG =
(𝑤 ∈ V ↦
⦋(𝑥 ∈
(Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 31 | | ovex 6678 |
. . . . . . 7
⊢ ((𝐻 sSet 〈(Itv‘ndx),
𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) ∈ V |
| 32 | 31 | csbex 4793 |
. . . . . 6
⊢
⦋(𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) ∈ V |
| 33 | 29, 30, 32 | fvmpt 6282 |
. . . . 5
⊢ (𝐻 ∈ V →
(toTG‘𝐻) =
⦋(𝑥 ∈
𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 34 | 3, 33 | syl 17 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → (toTG‘𝐻) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 35 | | fvex 6201 |
. . . . . . . 8
⊢
(Base‘𝐻)
∈ V |
| 36 | 5, 35 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 37 | 36, 36 | mpt2ex 7247 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V |
| 38 | 37 | a1i 11 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V) |
| 39 | | simpr 477 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 40 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑐 − 𝑎) = (𝑐 − 𝑥)) |
| 41 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (𝑏 − 𝑎) = (𝑏 − 𝑥)) |
| 42 | 41 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑘 · (𝑏 − 𝑎)) = (𝑘 · (𝑏 − 𝑥))) |
| 43 | 40, 42 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎)) ↔ (𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)))) |
| 44 | 43 | rexbidv 3052 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)))) |
| 45 | 44 | rabbidv 3189 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))} = {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))}) |
| 46 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑦 → (𝑏 − 𝑥) = (𝑦 − 𝑥)) |
| 47 | 46 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (𝑘 · (𝑏 − 𝑥)) = (𝑘 · (𝑦 − 𝑥))) |
| 48 | 47 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → ((𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)) ↔ (𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
| 49 | 48 | rexbidv 3052 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
| 50 | 49 | rabbidv 3189 |
. . . . . . . . 9
⊢ (𝑏 = 𝑦 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))} = {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
| 51 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑧 → (𝑐 − 𝑥) = (𝑧 − 𝑥)) |
| 52 | 51 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑧 → ((𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
| 53 | 52 | rexbidv 3052 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
| 54 | 53 | cbvrabv 3199 |
. . . . . . . . 9
⊢ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} |
| 55 | 50, 54 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑏 = 𝑦 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
| 56 | 45, 55 | cbvmpt2v 6735 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
| 57 | 39, 56 | syl6eqr 2674 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) |
| 58 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) |
| 59 | 58, 56 | syl6eq 2672 |
. . . . . . . . 9
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 60 | 59 | opeq2d 4409 |
. . . . . . . 8
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 〈(Itv‘ndx), 𝑖〉 = 〈(Itv‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) |
| 61 | 60 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝐻 sSet 〈(Itv‘ndx), 𝑖〉) = (𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉)) |
| 62 | 59 | oveqd 6667 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
| 63 | 62 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
| 64 | 59 | oveqd 6667 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
| 65 | 64 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
| 66 | 59 | oveqd 6667 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)) |
| 67 | 66 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))) |
| 68 | 63, 65, 67 | 3orbi123d 1398 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)))) |
| 69 | 68 | rabbidv 3189 |
. . . . . . . . 9
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))}) |
| 70 | 69 | mpt2eq3dv 6721 |
. . . . . . . 8
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})) |
| 71 | 70 | opeq2d 4409 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉) |
| 72 | 61, 71 | oveq12d 6668 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
| 73 | 57, 72 | syldan 487 |
. . . . 5
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
| 74 | 38, 73 | csbied 3560 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
| 75 | 2, 34, 74 | 3eqtrd 2660 |
. . 3
⊢ (𝐻 ∈ 𝑉 → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
| 76 | 75 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ 𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉))) |
| 77 | | itvid 25341 |
. . . . . . . . . . . . 13
⊢ Itv =
Slot (Itv‘ndx) |
| 78 | | 1nn0 11308 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ0 |
| 79 | | 6nn 11189 |
. . . . . . . . . . . . . . . . 17
⊢ 6 ∈
ℕ |
| 80 | 78, 79 | decnncl 11518 |
. . . . . . . . . . . . . . . 16
⊢ ;16 ∈ ℕ |
| 81 | 80 | nnrei 11029 |
. . . . . . . . . . . . . . 15
⊢ ;16 ∈ ℝ |
| 82 | | 6nn0 11313 |
. . . . . . . . . . . . . . . 16
⊢ 6 ∈
ℕ0 |
| 83 | | 7nn 11190 |
. . . . . . . . . . . . . . . 16
⊢ 7 ∈
ℕ |
| 84 | | 6lt7 11209 |
. . . . . . . . . . . . . . . 16
⊢ 6 <
7 |
| 85 | 78, 82, 83, 84 | declt 11530 |
. . . . . . . . . . . . . . 15
⊢ ;16 < ;17 |
| 86 | 81, 85 | ltneii 10150 |
. . . . . . . . . . . . . 14
⊢ ;16 ≠ ;17 |
| 87 | | itvndx 25339 |
. . . . . . . . . . . . . . 15
⊢
(Itv‘ndx) = ;16 |
| 88 | | lngndx 25340 |
. . . . . . . . . . . . . . 15
⊢
(LineG‘ndx) = ;17 |
| 89 | 87, 88 | neeq12i 2860 |
. . . . . . . . . . . . . 14
⊢
((Itv‘ndx) ≠ (LineG‘ndx) ↔ ;16 ≠ ;17) |
| 90 | 86, 89 | mpbir 221 |
. . . . . . . . . . . . 13
⊢
(Itv‘ndx) ≠ (LineG‘ndx) |
| 91 | 77, 90 | setsnid 15915 |
. . . . . . . . . . . 12
⊢
(Itv‘(𝐻 sSet
〈(Itv‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉)) = (Itv‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
| 92 | 76, 91 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
| 93 | | ttgval.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (Itv‘𝐺) |
| 94 | 93 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → 𝐼 = (Itv‘𝐺)) |
| 95 | 77 | setsid 15914 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
| 96 | 37, 95 | mpan2 707 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
| 97 | 92, 94, 96 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 98 | 97 | oveqd 6667 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
| 99 | 98 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
| 100 | 97 | oveqd 6667 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
| 101 | 100 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
| 102 | 97 | oveqd 6667 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)) |
| 103 | 102 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))) |
| 104 | 99, 101, 103 | 3orbi123d 1398 |
. . . . . . 7
⊢ (𝐻 ∈ 𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)))) |
| 105 | 104 | rabbidv 3189 |
. . . . . 6
⊢ (𝐻 ∈ 𝑉 → {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))}) |
| 106 | 105 | mpt2eq3dv 6721 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})) |
| 107 | 106 | opeq2d 4409 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉) |
| 108 | 107 | oveq2d 6666 |
. . 3
⊢ (𝐻 ∈ 𝑉 → ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
| 109 | 75, 108 | eqtr4d 2659 |
. 2
⊢ (𝐻 ∈ 𝑉 → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉)) |
| 110 | 109, 97 | jca 554 |
1
⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |