MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgval Structured version   Visualization version   GIF version

Theorem ttgval 25755
Description: Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgval.b 𝐵 = (Base‘𝐻)
ttgval.m = (-g𝐻)
ttgval.s · = ( ·𝑠𝐻)
ttgval.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
ttgval (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑘)   · (𝑘)   𝐺(𝑥,𝑦,𝑧,𝑘)   𝐼(𝑥,𝑦,𝑧,𝑘)   (𝑘)   𝑉(𝑘)

Proof of Theorem ttgval
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
21a1i 11 . . . 4 (𝐻𝑉𝐺 = (toTG‘𝐻))
3 elex 3212 . . . . 5 (𝐻𝑉𝐻 ∈ V)
4 fveq2 6191 . . . . . . . . . 10 (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻))
5 ttgval.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
64, 5syl6eqr 2674 . . . . . . . . 9 (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵)
7 fveq2 6191 . . . . . . . . . . . . . 14 (𝑤 = 𝐻 → (-g𝑤) = (-g𝐻))
8 ttgval.m . . . . . . . . . . . . . 14 = (-g𝐻)
97, 8syl6eqr 2674 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (-g𝑤) = )
109oveqd 6667 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑧(-g𝑤)𝑥) = (𝑧 𝑥))
11 fveq2 6191 . . . . . . . . . . . . . 14 (𝑤 = 𝐻 → ( ·𝑠𝑤) = ( ·𝑠𝐻))
12 ttgval.s . . . . . . . . . . . . . 14 · = ( ·𝑠𝐻)
1311, 12syl6eqr 2674 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → ( ·𝑠𝑤) = · )
14 eqidd 2623 . . . . . . . . . . . . 13 (𝑤 = 𝐻𝑘 = 𝑘)
159oveqd 6667 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (𝑦(-g𝑤)𝑥) = (𝑦 𝑥))
1613, 14, 15oveq123d 6671 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) = (𝑘 · (𝑦 𝑥)))
1710, 16eqeq12d 2637 . . . . . . . . . . 11 (𝑤 = 𝐻 → ((𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
1817rexbidv 3052 . . . . . . . . . 10 (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
196, 18rabeqbidv 3195 . . . . . . . . 9 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
206, 6, 19mpt2eq123dv 6717 . . . . . . . 8 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
2120csbeq1d 3540 . . . . . . 7 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
22 oveq1 6657 . . . . . . . . 9 (𝑤 = 𝐻 → (𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩))
23 rabeq 3192 . . . . . . . . . . . 12 ((Base‘𝑤) = 𝐵 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
246, 23syl 17 . . . . . . . . . . 11 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
256, 6, 24mpt2eq123dv 6717 . . . . . . . . . 10 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}))
2625opeq2d 4409 . . . . . . . . 9 (𝑤 = 𝐻 → ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩)
2722, 26oveq12d 6668 . . . . . . . 8 (𝑤 = 𝐻 → ((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2827csbeq2dv 3992 . . . . . . 7 (𝑤 = 𝐻(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2921, 28eqtrd 2656 . . . . . 6 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
30 df-ttg 25754 . . . . . 6 toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
31 ovex 6678 . . . . . . 7 ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3231csbex 4793 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3329, 30, 32fvmpt 6282 . . . . 5 (𝐻 ∈ V → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
343, 33syl 17 . . . 4 (𝐻𝑉 → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
35 fvex 6201 . . . . . . . 8 (Base‘𝐻) ∈ V
365, 35eqeltri 2697 . . . . . . 7 𝐵 ∈ V
3736, 36mpt2ex 7247 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V
3837a1i 11 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V)
39 simpr 477 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
40 oveq2 6658 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑐 𝑎) = (𝑐 𝑥))
41 oveq2 6658 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑏 𝑎) = (𝑏 𝑥))
4241oveq2d 6666 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (𝑏 𝑎)) = (𝑘 · (𝑏 𝑥)))
4340, 42eqeq12d 2637 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ (𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4443rexbidv 3052 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4544rabbidv 3189 . . . . . . . 8 (𝑎 = 𝑥 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))})
46 oveq1 6657 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 𝑥) = (𝑦 𝑥))
4746oveq2d 6666 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝑘 · (𝑏 𝑥)) = (𝑘 · (𝑦 𝑥)))
4847eqeq2d 2632 . . . . . . . . . . 11 (𝑏 = 𝑦 → ((𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ (𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4948rexbidv 3052 . . . . . . . . . 10 (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
5049rabbidv 3189 . . . . . . . . 9 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))})
51 oveq1 6657 . . . . . . . . . . . 12 (𝑐 = 𝑧 → (𝑐 𝑥) = (𝑧 𝑥))
5251eqeq1d 2624 . . . . . . . . . . 11 (𝑐 = 𝑧 → ((𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5352rexbidv 3052 . . . . . . . . . 10 (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5453cbvrabv 3199 . . . . . . . . 9 {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}
5550, 54syl6eq 2672 . . . . . . . 8 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5645, 55cbvmpt2v 6735 . . . . . . 7 (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5739, 56syl6eqr 2674 . . . . . 6 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
58 simpr 477 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
5958, 56syl6eq 2672 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
6059opeq2d 4409 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(Itv‘ndx), 𝑖⟩ = ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)
6160oveq2d 6666 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩))
6259oveqd 6667 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6362eleq2d 2687 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6459oveqd 6667 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6564eleq2d 2687 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6659oveqd 6667 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
6766eleq2d 2687 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
6863, 65, 673orbi123d 1398 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
6968rabbidv 3189 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
7069mpt2eq3dv 6721 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
7170opeq2d 4409 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
7261, 71oveq12d 6668 . . . . . 6 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7357, 72syldan 487 . . . . 5 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7438, 73csbied 3560 . . . 4 (𝐻𝑉(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
752, 34, 743eqtrd 2660 . . 3 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7675fveq2d 6195 . . . . . . . . . . . 12 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)))
77 itvid 25341 . . . . . . . . . . . . 13 Itv = Slot (Itv‘ndx)
78 1nn0 11308 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
79 6nn 11189 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
8078, 79decnncl 11518 . . . . . . . . . . . . . . . 16 16 ∈ ℕ
8180nnrei 11029 . . . . . . . . . . . . . . 15 16 ∈ ℝ
82 6nn0 11313 . . . . . . . . . . . . . . . 16 6 ∈ ℕ0
83 7nn 11190 . . . . . . . . . . . . . . . 16 7 ∈ ℕ
84 6lt7 11209 . . . . . . . . . . . . . . . 16 6 < 7
8578, 82, 83, 84declt 11530 . . . . . . . . . . . . . . 15 16 < 17
8681, 85ltneii 10150 . . . . . . . . . . . . . 14 16 ≠ 17
87 itvndx 25339 . . . . . . . . . . . . . . 15 (Itv‘ndx) = 16
88 lngndx 25340 . . . . . . . . . . . . . . 15 (LineG‘ndx) = 17
8987, 88neeq12i 2860 . . . . . . . . . . . . . 14 ((Itv‘ndx) ≠ (LineG‘ndx) ↔ 16 ≠ 17)
9086, 89mpbir 221 . . . . . . . . . . . . 13 (Itv‘ndx) ≠ (LineG‘ndx)
9177, 90setsnid 15915 . . . . . . . . . . . 12 (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
9276, 91syl6eqr 2674 . . . . . . . . . . 11 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
93 ttgval.i . . . . . . . . . . . 12 𝐼 = (Itv‘𝐺)
9493a1i 11 . . . . . . . . . . 11 (𝐻𝑉𝐼 = (Itv‘𝐺))
9577setsid 15914 . . . . . . . . . . . 12 ((𝐻𝑉 ∧ (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
9637, 95mpan2 707 . . . . . . . . . . 11 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
9792, 94, 963eqtr4d 2666 . . . . . . . . . 10 (𝐻𝑉𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9897oveqd 6667 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
9998eleq2d 2687 . . . . . . . 8 (𝐻𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
10097oveqd 6667 . . . . . . . . 9 (𝐻𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
101100eleq2d 2687 . . . . . . . 8 (𝐻𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
10297oveqd 6667 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
103102eleq2d 2687 . . . . . . . 8 (𝐻𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
10499, 101, 1033orbi123d 1398 . . . . . . 7 (𝐻𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
105104rabbidv 3189 . . . . . 6 (𝐻𝑉 → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
106105mpt2eq3dv 6721 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
107106opeq2d 4409 . . . 4 (𝐻𝑉 → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
108107oveq2d 6666 . . 3 (𝐻𝑉 → ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
10975, 108eqtr4d 2659 . 2 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩))
110109, 97jca 554 1 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3o 1036   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  csb 3533  cop 4183  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937  6c6 11074  7c7 11075  cdc 11493  [,]cicc 12178  ndxcnx 15854   sSet csts 15855  Basecbs 15857   ·𝑠 cvsca 15945  -gcsg 17424  Itvcitv 25335  LineGclng 25336  toTGcttg 25753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494  df-ndx 15860  df-slot 15861  df-sets 15864  df-itv 25337  df-lng 25338  df-ttg 25754
This theorem is referenced by:  ttglem  25756  ttgitvval  25762
  Copyright terms: Public domain W3C validator