| Step | Hyp | Ref
| Expression |
| 1 | | dmeq 5324 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → dom 𝑥 = dom 𝑦) |
| 2 | 1 | dmeqd 5326 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → dom dom 𝑥 = dom dom 𝑦) |
| 3 | | oveq 6656 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)) |
| 4 | 3 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑦𝑗))) |
| 5 | 4 | fveq1d 6193 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑘)) |
| 6 | 2, 2, 5 | mpt2eq123dv 6717 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘))) |
| 7 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 𝑙 → ((coe1‘(𝑖𝑦𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑙)) |
| 8 | 7 | mpt2eq3dv 6721 |
. . . . . . 7
⊢ (𝑘 = 𝑙 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) |
| 9 | 6, 8 | cbvmpt2v 6735 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑦 ∈ 𝐵, 𝑙 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) |
| 10 | | dmexg 7097 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → dom 𝑦 ∈ V) |
| 11 | | dmexg 7097 |
. . . . . . . . . . 11
⊢ (dom
𝑦 ∈ V → dom dom
𝑦 ∈
V) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → dom dom 𝑦 ∈ V) |
| 13 | 12, 12 | jca 554 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V)) |
| 14 | 13 | ad2antrl 764 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑙 ∈ 𝐼)) → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V)) |
| 15 | | mpt2exga 7246 |
. . . . . . . 8
⊢ ((dom dom
𝑦 ∈ V ∧ dom dom
𝑦 ∈ V) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V) |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑙 ∈ 𝐼)) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V) |
| 17 | 16 | ralrimivva 2971 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) →
∀𝑦 ∈ 𝐵 ∀𝑙 ∈ 𝐼 (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V) |
| 18 | | simprr 796 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → 𝐼 ≠ ∅) |
| 19 | | nn0ex 11298 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
| 20 | 19 | ssex 4802 |
. . . . . . 7
⊢ (𝐼 ⊆ ℕ0
→ 𝐼 ∈
V) |
| 21 | 20 | ad2antrl 764 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ V) |
| 22 | | simp3 1063 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
| 23 | 22 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → 𝑀 ∈ 𝐵) |
| 24 | 9, 17, 18, 21, 23 | mpt2curryvald 7396 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑙 ∈ 𝐼 ↦ ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))) |
| 25 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑖𝑦𝑗))‘𝑙) = ((coe1‘(𝑖𝑦𝑗))‘𝑘)) |
| 26 | 25 | mpt2eq3dv 6721 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘))) |
| 27 | 26 | csbeq2dv 3992 |
. . . . . . 7
⊢ (𝑙 = 𝑘 → ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘))) |
| 28 | | eqcom 2629 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| 29 | | eqcom 2629 |
. . . . . . . . 9
⊢ ((𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) ↔ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
| 30 | 6, 28, 29 | 3imtr3i 280 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
| 31 | 30 | cbvcsbv 3539 |
. . . . . . 7
⊢
⦋𝑀 /
𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) |
| 32 | 27, 31 | syl6eq 2672 |
. . . . . 6
⊢ (𝑙 = 𝑘 → ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
| 33 | 32 | cbvmptv 4750 |
. . . . 5
⊢ (𝑙 ∈ 𝐼 ↦ ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
| 34 | 24, 33 | syl6eq 2672 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))) |
| 35 | | dmeq 5324 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → dom 𝑥 = dom 𝑀) |
| 36 | 35 | dmeqd 5326 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → dom dom 𝑥 = dom dom 𝑀) |
| 37 | | oveq 6656 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → (𝑖𝑥𝑗) = (𝑖𝑀𝑗)) |
| 38 | 37 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
| 39 | 38 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
| 40 | 36, 36, 39 | mpt2eq123dv 6717 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 41 | 40 | adantl 482 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 = 𝑀) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 42 | 22, 41 | csbied 3560 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 43 | | pmatcollpw.c |
. . . . . . . . . . . . 13
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 44 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 45 | | pmatcollpw.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐶) |
| 46 | 43, 44, 45 | matbas2i 20228 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))) |
| 47 | | elmapi 7879 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ((Base‘𝑃) ↑𝑚
(𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃)) |
| 48 | | fdm 6051 |
. . . . . . . . . . . . . 14
⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom 𝑀 = (𝑁 × 𝑁)) |
| 49 | 48 | dmeqd 5326 |
. . . . . . . . . . . . 13
⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom dom 𝑀 = dom (𝑁 × 𝑁)) |
| 50 | | dmxpid 5345 |
. . . . . . . . . . . . 13
⊢ dom
(𝑁 × 𝑁) = 𝑁 |
| 51 | 49, 50 | syl6req 2673 |
. . . . . . . . . . . 12
⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → 𝑁 = dom dom 𝑀) |
| 52 | 46, 47, 51 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝐵 → 𝑁 = dom dom 𝑀) |
| 53 | 52 | 3ad2ant3 1084 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 = dom dom 𝑀) |
| 54 | 53 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → 𝑁 = dom dom 𝑀) |
| 55 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) |
| 56 | 55 | oveqd 6667 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
| 57 | 56 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
| 58 | 57 | fveq1d 6193 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
| 59 | 54, 54, 58 | mpt2eq123dv 6717 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 60 | 22, 59 | csbied 3560 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 61 | 42, 60 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) |
| 62 | 61 | adantr 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) →
⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) |
| 63 | 62 | mpteq2dv 4745 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
| 64 | 34, 63 | eqtrd 2656 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
| 65 | | oveq 6656 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
| 66 | 65 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
| 67 | 66 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
| 68 | 67 | fveq1d 6193 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
| 69 | 68 | mpt2eq3dv 6721 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 70 | 22, 69 | csbied 3560 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 71 | 70 | ad2antrr 762 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
| 72 | | pmatcollpw3.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 73 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 74 | | pmatcollpw3.d |
. . . . . . 7
⊢ 𝐷 = (Base‘𝐴) |
| 75 | | simpll1 1100 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑁 ∈ Fin) |
| 76 | | simpll2 1101 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CRing) |
| 77 | | simp2 1062 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 78 | | simp3 1063 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 79 | 23 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑀 ∈ 𝐵) |
| 80 | 79 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
| 81 | 43, 44, 45, 77, 78, 80 | matecld 20232 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃)) |
| 82 | | ssel 3597 |
. . . . . . . . . . 11
⊢ (𝐼 ⊆ ℕ0
→ (𝑘 ∈ 𝐼 → 𝑘 ∈
ℕ0)) |
| 83 | 82 | ad2antrl 764 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 → 𝑘 ∈
ℕ0)) |
| 84 | 83 | imp 445 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ ℕ0) |
| 85 | 84 | 3ad2ant1 1082 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ ℕ0) |
| 86 | | eqid 2622 |
. . . . . . . . 9
⊢
(coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗)) |
| 87 | | pmatcollpw.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
| 88 | 86, 44, 87, 73 | coe1fvalcl 19582 |
. . . . . . . 8
⊢ (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅)) |
| 89 | 81, 85, 88 | syl2anc 693 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅)) |
| 90 | 72, 73, 74, 75, 76, 89 | matbas2d 20229 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)) ∈ 𝐷) |
| 91 | 71, 90 | eqeltrd 2701 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) ∈ 𝐷) |
| 92 | | eqid 2622 |
. . . . 5
⊢ (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) |
| 93 | 91, 92 | fmptd 6385 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼⟶𝐷) |
| 94 | | fvex 6201 |
. . . . . . 7
⊢
(Base‘𝐴)
∈ V |
| 95 | 74, 94 | eqeltri 2697 |
. . . . . 6
⊢ 𝐷 ∈ V |
| 96 | 95 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐷 ∈ V) |
| 97 | 20 | adantr 481 |
. . . . 5
⊢ ((𝐼 ⊆ ℕ0
∧ 𝐼 ≠ ∅)
→ 𝐼 ∈
V) |
| 98 | | elmapg 7870 |
. . . . 5
⊢ ((𝐷 ∈ V ∧ 𝐼 ∈ V) → ((𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷 ↑𝑚 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼⟶𝐷)) |
| 99 | 96, 97, 98 | syl2an 494 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → ((𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷 ↑𝑚 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼⟶𝐷)) |
| 100 | 93, 99 | mpbird 247 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷 ↑𝑚 𝐼)) |
| 101 | 64, 100 | eqeltrd 2701 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) ∈ (𝐷 ↑𝑚 𝐼)) |
| 102 | | fveq1 6190 |
. . . . . . . . . . 11
⊢ (𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) → (𝑓‘𝑛) = ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛)) |
| 103 | 102 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑓‘𝑛) = ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛)) |
| 104 | 103 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) = ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛)) |
| 105 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
| 106 | | dmexg 7097 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐵 → dom 𝑥 ∈ V) |
| 107 | | dmexg 7097 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
𝑥 ∈ V → dom dom
𝑥 ∈
V) |
| 108 | 106, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐵 → dom dom 𝑥 ∈ V) |
| 109 | 108, 108 | jca 554 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐵 → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V)) |
| 110 | 109 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑘 ∈ 𝐼)) → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V)) |
| 111 | | mpt2exga 7246 |
. . . . . . . . . . . . . 14
⊢ ((dom dom
𝑥 ∈ V ∧ dom dom
𝑥 ∈ V) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V) |
| 112 | 110, 111 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑘 ∈ 𝐼)) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V) |
| 113 | 112 | ralrimivva 2971 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑘 ∈ 𝐼 (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V) |
| 114 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 𝐼 ∈ V) |
| 115 | 23 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 𝑀 ∈ 𝐵) |
| 116 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 𝑛 ∈ 𝐼) |
| 117 | 105, 113,
114, 115, 116 | fvmpt2curryd 7397 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛)) |
| 118 | | df-decpmat 20568 |
. . . . . . . . . . . . . 14
⊢
decompPMat = (𝑥 ∈ V,
𝑘 ∈
ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
| 119 | 118 | reseq1i 5392 |
. . . . . . . . . . . . 13
⊢ (
decompPMat ↾ (𝐵
× 𝐼)) = ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) |
| 120 | | ssv 3625 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 ⊆ V |
| 121 | 120 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐵 ⊆ V) |
| 122 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ⊆ ℕ0
∧ 𝐼 ≠ ∅)
→ 𝐼 ⊆
ℕ0) |
| 123 | 121, 122 | anim12i 590 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝐵 ⊆ V ∧ 𝐼 ⊆
ℕ0)) |
| 124 | 123 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝐵 ⊆ V ∧ 𝐼 ⊆
ℕ0)) |
| 125 | | resmpt2 6758 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0)
→ ((𝑥 ∈ V, 𝑘 ∈ ℕ0
↦ (𝑖 ∈ dom dom
𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))) |
| 126 | 124, 125 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))) |
| 127 | 119, 126 | syl5req 2669 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = ( decompPMat ↾ (𝐵 × 𝐼))) |
| 128 | 127 | oveqd 6667 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑀(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
| 129 | 117, 128 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
| 130 | 129 | adantlr 751 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
| 131 | 104, 130 | eqtrd 2656 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
| 132 | 131 | fveq2d 6195 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑇‘(𝑓‘𝑛)) = (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))) |
| 133 | 22 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → 𝑀 ∈ 𝐵) |
| 134 | | ovres 6800 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝐵 ∧ 𝑛 ∈ 𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛)) |
| 135 | 133, 134 | sylan 488 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛)) |
| 136 | 135 | fveq2d 6195 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛))) |
| 137 | 132, 136 | eqtrd 2656 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑇‘(𝑓‘𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛))) |
| 138 | 137 | oveq2d 6666 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))) = ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))) |
| 139 | 138 | mpteq2dva 4744 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))) = (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) |
| 140 | 139 | oveq2d 6666 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))) = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) |
| 141 | 140 | eqeq2d 2632 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))))) |
| 142 | 101, 141 | rspcedv 3313 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑𝑚 𝐼)𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) |