MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolyval Structured version   Visualization version   GIF version

Theorem bpolyval 14780
Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpolyval ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolyval
Dummy variables 𝑔 𝑚 𝑛 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . . 6 (#‘dom 𝑐) ∈ V
2 oveq2 6658 . . . . . . 7 (𝑛 = (#‘dom 𝑐) → (𝑋𝑛) = (𝑋↑(#‘dom 𝑐)))
3 oveq1 6657 . . . . . . . . 9 (𝑛 = (#‘dom 𝑐) → (𝑛C𝑚) = ((#‘dom 𝑐)C𝑚))
4 oveq1 6657 . . . . . . . . . . 11 (𝑛 = (#‘dom 𝑐) → (𝑛𝑚) = ((#‘dom 𝑐) − 𝑚))
54oveq1d 6665 . . . . . . . . . 10 (𝑛 = (#‘dom 𝑐) → ((𝑛𝑚) + 1) = (((#‘dom 𝑐) − 𝑚) + 1))
65oveq2d 6666 . . . . . . . . 9 (𝑛 = (#‘dom 𝑐) → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1)))
73, 6oveq12d 6668 . . . . . . . 8 (𝑛 = (#‘dom 𝑐) → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = (((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1))))
87sumeq2sdv 14435 . . . . . . 7 (𝑛 = (#‘dom 𝑐) → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1))))
92, 8oveq12d 6668 . . . . . 6 (𝑛 = (#‘dom 𝑐) → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(#‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1)))))
101, 9csbie 3559 . . . . 5 (#‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(#‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1))))
11 oveq2 6658 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
12 fveq2 6191 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑐𝑚) = (𝑐𝑘))
13 oveq2 6658 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑛𝑚) = (𝑛𝑘))
1413oveq1d 6665 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑛𝑚) + 1) = ((𝑛𝑘) + 1))
1512, 14oveq12d 6668 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑘) / ((𝑛𝑘) + 1)))
1611, 15oveq12d 6668 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))))
1716cbvsumv 14426 . . . . . . . 8 Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1)))
18 dmeq 5324 . . . . . . . . 9 (𝑐 = 𝑔 → dom 𝑐 = dom 𝑔)
19 fveq1 6190 . . . . . . . . . . . 12 (𝑐 = 𝑔 → (𝑐𝑘) = (𝑔𝑘))
2019oveq1d 6665 . . . . . . . . . . 11 (𝑐 = 𝑔 → ((𝑐𝑘) / ((𝑛𝑘) + 1)) = ((𝑔𝑘) / ((𝑛𝑘) + 1)))
2120oveq2d 6666 . . . . . . . . . 10 (𝑐 = 𝑔 → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2221adantr 481 . . . . . . . . 9 ((𝑐 = 𝑔𝑘 ∈ dom 𝑐) → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2318, 22sumeq12dv 14437 . . . . . . . 8 (𝑐 = 𝑔 → Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2417, 23syl5eq 2668 . . . . . . 7 (𝑐 = 𝑔 → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2524oveq2d 6666 . . . . . 6 (𝑐 = 𝑔 → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2625csbeq2dv 3992 . . . . 5 (𝑐 = 𝑔(#‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = (#‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2710, 26syl5eqr 2670 . . . 4 (𝑐 = 𝑔 → ((𝑋↑(#‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1)))) = (#‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2818fveq2d 6195 . . . . 5 (𝑐 = 𝑔 → (#‘dom 𝑐) = (#‘dom 𝑔))
2928csbeq1d 3540 . . . 4 (𝑐 = 𝑔(#‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3027, 29eqtrd 2656 . . 3 (𝑐 = 𝑔 → ((𝑋↑(#‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1)))) = (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3130cbvmptv 4750 . 2 (𝑐 ∈ V ↦ ((𝑋↑(#‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1))))) = (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32 eqid 2622 . 2 wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(#‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1)))))) = wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(#‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((#‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((#‘dom 𝑐) − 𝑚) + 1))))))
3331, 32bpolylem 14779 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  wrecscwrecs 7406  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266   / cdiv 10684  0cn0 11292  ...cfz 12326  cexp 12860  Ccbc 13089  #chash 13117  Σcsu 14416   BernPoly cbp 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118  df-sum 14417  df-bpoly 14778
This theorem is referenced by:  bpoly0  14781  bpoly1  14782  bpolycl  14783  bpolysum  14784  bpolydiflem  14785  bpoly2  14788  bpoly3  14789  bpoly4  14790
  Copyright terms: Public domain W3C validator