Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrpssN Structured version   Visualization version   GIF version

Theorem lkrpssN 34450
Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrpss.f 𝐹 = (LFnl‘𝑊)
lkrpss.k 𝐾 = (LKer‘𝑊)
lkrpss.d 𝐷 = (LDual‘𝑊)
lkrpss.o 0 = (0g𝐷)
lkrpss.w (𝜑𝑊 ∈ LVec)
lkrpss.g (𝜑𝐺𝐹)
lkrpss.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrpssN (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))

Proof of Theorem lkrpssN
StepHypRef Expression
1 df-pss 3590 . . 3 ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
2 simpr 477 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (𝐾𝐻))
3 eqid 2622 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
4 lkrpss.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
5 lkrpss.k . . . . . . . . . 10 𝐾 = (LKer‘𝑊)
6 lkrpss.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
7 lveclmod 19106 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
9 lkrpss.h . . . . . . . . . 10 (𝜑𝐻𝐹)
103, 4, 5, 8, 9lkrssv 34383 . . . . . . . . 9 (𝜑 → (𝐾𝐻) ⊆ (Base‘𝑊))
1110adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐻) ⊆ (Base‘𝑊))
122, 11psssstrd 3716 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (Base‘𝑊))
1312pssned 3705 . . . . . 6 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ≠ (Base‘𝑊))
141, 13sylan2br 493 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐺) ≠ (Base‘𝑊))
15 simplr 792 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
16 eqid 2622 . . . . . . . . . . 11 (LSHyp‘𝑊) = (LSHyp‘𝑊)
176ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → 𝑊 ∈ LVec)
18 simpr 477 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
19 simplr 792 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
2010ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ⊆ (Base‘𝑊))
21 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) = (Base‘𝑊))
22 simpllr 799 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
2321, 22eqsstr3d 3640 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (Base‘𝑊) ⊆ (𝐾𝐻))
2420, 23eqssd 3620 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) = (Base‘𝑊))
253, 16, 4, 5, 6, 9lkrshp4 34395 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2625ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2726necon1bbid 2833 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
2824, 27mpbird 247 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
2919, 28pm2.21dd 186 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
30 lkrpss.g . . . . . . . . . . . . . 14 (𝜑𝐺𝐹)
313, 16, 4, 5, 6, 30lkrshpor 34394 . . . . . . . . . . . . 13 (𝜑 → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3231ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3318, 29, 32mpjaodan 827 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
34 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
3516, 17, 33, 34lshpcmp 34275 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ (𝐾𝐺) = (𝐾𝐻)))
3615, 35mpbid 222 . . . . . . . . 9 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) = (𝐾𝐻))
3736ex 450 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐻) ∈ (LSHyp‘𝑊) → (𝐾𝐺) = (𝐾𝐻)))
3837necon3ad 2807 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐺) ≠ (𝐾𝐻) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
3938impr 649 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
4025necon1bbid 2833 . . . . . . 7 (𝜑 → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4140adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4239, 41mpbid 222 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐻) = (Base‘𝑊))
4314, 42jca 554 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)))
443, 4, 5, 8, 30lkrssv 34383 . . . . . . 7 (𝜑 → (𝐾𝐺) ⊆ (Base‘𝑊))
4544adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (Base‘𝑊))
46 simprr 796 . . . . . . 7 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐻) = (Base‘𝑊))
4746eqcomd 2628 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (Base‘𝑊) = (𝐾𝐻))
4845, 47sseqtrd 3641 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (𝐾𝐻))
49 simprl 794 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (Base‘𝑊))
5049, 47neeqtrd 2863 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (𝐾𝐻))
5148, 50jca 554 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
5243, 51impbida 877 . . 3 (𝜑 → (((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
531, 52syl5bb 272 . 2 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
54 lkrpss.d . . . . 5 𝐷 = (LDual‘𝑊)
55 lkrpss.o . . . . 5 0 = (0g𝐷)
563, 4, 5, 54, 55, 8, 30lkr0f2 34448 . . . 4 (𝜑 → ((𝐾𝐺) = (Base‘𝑊) ↔ 𝐺 = 0 ))
5756necon3bid 2838 . . 3 (𝜑 → ((𝐾𝐺) ≠ (Base‘𝑊) ↔ 𝐺0 ))
583, 4, 5, 54, 55, 8, 9lkr0f2 34448 . . 3 (𝜑 → ((𝐾𝐻) = (Base‘𝑊) ↔ 𝐻 = 0 ))
5957, 58anbi12d 747 . 2 (𝜑 → (((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)) ↔ (𝐺0𝐻 = 0 )))
6053, 59bitrd 268 1 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wss 3574  wpss 3575  cfv 5888  Basecbs 15857  0gc0g 16100  LModclmod 18863  LVecclvec 19102  LSHypclsh 34262  LFnlclfn 34344  LKerclk 34372  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264  df-lfl 34345  df-lkr 34373  df-ldual 34411
This theorem is referenced by:  lkrss2N  34456  lkreqN  34457
  Copyright terms: Public domain W3C validator