| Step | Hyp | Ref
| Expression |
| 1 | | pgpfac.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) |
| 2 | | pgpfac.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| 3 | | pgpfac.h |
. . . . . . . 8
⊢ 𝐻 = (𝐺 ↾s 𝑈) |
| 4 | 3 | subsubg 17617 |
. . . . . . 7
⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈))) |
| 5 | 2, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∈ (SubGrp‘𝐻) ↔ (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈))) |
| 6 | 1, 5 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝑊 ∈ (SubGrp‘𝐺) ∧ 𝑊 ⊆ 𝑈)) |
| 7 | 6 | simpld 475 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
| 8 | | pgpfac.a |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) |
| 9 | 6 | simprd 479 |
. . . . 5
⊢ (𝜑 → 𝑊 ⊆ 𝑈) |
| 10 | | pgpfac.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 11 | | pgpfac.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐺) |
| 12 | 11 | subgss 17595 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
| 13 | 2, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 14 | | ssfi 8180 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝑈 ⊆ 𝐵) → 𝑈 ∈ Fin) |
| 15 | 10, 13, 14 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 16 | | ssfi 8180 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Fin ∧ 𝑊 ⊆ 𝑈) → 𝑊 ∈ Fin) |
| 17 | 15, 9, 16 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 18 | | hashcl 13147 |
. . . . . . . . 9
⊢ (𝑊 ∈ Fin →
(#‘𝑊) ∈
ℕ0) |
| 19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝑊) ∈
ℕ0) |
| 20 | 19 | nn0red 11352 |
. . . . . . 7
⊢ (𝜑 → (#‘𝑊) ∈ ℝ) |
| 21 | | pgpfac.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐻) |
| 22 | | fvex 6201 |
. . . . . . . . . . . 12
⊢
(0g‘𝐻) ∈ V |
| 23 | 21, 22 | eqeltri 2697 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 24 | | hashsng 13159 |
. . . . . . . . . . 11
⊢ ( 0 ∈ V
→ (#‘{ 0 }) = 1) |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . . . . 10
⊢
(#‘{ 0 }) = 1 |
| 26 | | subgrcl 17599 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp) |
| 27 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 28 | 27 | subgacs 17629 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 ∈ Grp →
(SubGrp‘𝐻) ∈
(ACS‘(Base‘𝐻))) |
| 29 | | acsmre 16313 |
. . . . . . . . . . . . . . . 16
⊢
((SubGrp‘𝐻)
∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻))) |
| 30 | 1, 26, 28, 29 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (SubGrp‘𝐻) ∈
(Moore‘(Base‘𝐻))) |
| 31 | | pgpfac.k |
. . . . . . . . . . . . . . 15
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐻)) |
| 32 | 30, 31 | mrcssvd 16283 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ (Base‘𝐻)) |
| 33 | 3 | subgbas 17598 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 = (Base‘𝐻)) |
| 34 | 2, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 = (Base‘𝐻)) |
| 35 | 32, 34 | sseqtr4d 3642 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ 𝑈) |
| 36 | | ssfi 8180 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Fin ∧ (𝐾‘{𝑋}) ⊆ 𝑈) → (𝐾‘{𝑋}) ∈ Fin) |
| 37 | 15, 35, 36 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ Fin) |
| 38 | | pgpfac.x |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 39 | 38, 34 | eleqtrd 2703 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) |
| 40 | 31 | mrcsncl 16272 |
. . . . . . . . . . . . . . . 16
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
| 41 | 30, 39, 40 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (SubGrp‘𝐻)) |
| 42 | 21 | subg0cl 17602 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾‘{𝑋}) ∈ (SubGrp‘𝐻) → 0 ∈ (𝐾‘{𝑋})) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈ (𝐾‘{𝑋})) |
| 44 | 43 | snssd 4340 |
. . . . . . . . . . . . 13
⊢ (𝜑 → { 0 } ⊆ (𝐾‘{𝑋})) |
| 45 | 39 | snssd 4340 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑋} ⊆ (Base‘𝐻)) |
| 46 | 30, 31, 45 | mrcssidd 16285 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑋} ⊆ (𝐾‘{𝑋})) |
| 47 | | snssg 4327 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ 𝑈 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋}))) |
| 48 | 38, 47 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∈ (𝐾‘{𝑋}) ↔ {𝑋} ⊆ (𝐾‘{𝑋}))) |
| 49 | 46, 48 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ (𝐾‘{𝑋})) |
| 50 | | pgpfac.oe |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑂‘𝑋) = 𝐸) |
| 51 | | pgpfac.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ≠ 1) |
| 52 | 50, 51 | eqnetrd 2861 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑂‘𝑋) ≠ 1) |
| 53 | | pgpfac.o |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑂 = (od‘𝐻) |
| 54 | 53, 21 | od1 17976 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻 ∈ Grp → (𝑂‘ 0 ) = 1) |
| 55 | 1, 26, 54 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑂‘ 0 ) = 1) |
| 56 | | elsni 4194 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) |
| 57 | 56 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ { 0 } → (𝑂‘𝑋) = (𝑂‘ 0 )) |
| 58 | 57 | eqeq1d 2624 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ { 0 } → ((𝑂‘𝑋) = 1 ↔ (𝑂‘ 0 ) = 1)) |
| 59 | 55, 58 | syl5ibrcom 237 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∈ { 0 } → (𝑂‘𝑋) = 1)) |
| 60 | 59 | necon3ad 2807 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑂‘𝑋) ≠ 1 → ¬ 𝑋 ∈ { 0 })) |
| 61 | 52, 60 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑋 ∈ { 0 }) |
| 62 | 44, 49, 61 | ssnelpssd 3719 |
. . . . . . . . . . . 12
⊢ (𝜑 → { 0 } ⊊ (𝐾‘{𝑋})) |
| 63 | | php3 8146 |
. . . . . . . . . . . 12
⊢ (((𝐾‘{𝑋}) ∈ Fin ∧ { 0 } ⊊ (𝐾‘{𝑋})) → { 0 } ≺ (𝐾‘{𝑋})) |
| 64 | 37, 62, 63 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → { 0 } ≺ (𝐾‘{𝑋})) |
| 65 | | snfi 8038 |
. . . . . . . . . . . 12
⊢ { 0 } ∈
Fin |
| 66 | | hashsdom 13170 |
. . . . . . . . . . . 12
⊢ (({ 0 } ∈ Fin
∧ (𝐾‘{𝑋}) ∈ Fin) →
((#‘{ 0 }) < (#‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋}))) |
| 67 | 65, 37, 66 | sylancr 695 |
. . . . . . . . . . 11
⊢ (𝜑 → ((#‘{ 0 }) <
(#‘(𝐾‘{𝑋})) ↔ { 0 } ≺ (𝐾‘{𝑋}))) |
| 68 | 64, 67 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (#‘{ 0 }) <
(#‘(𝐾‘{𝑋}))) |
| 69 | 25, 68 | syl5eqbrr 4689 |
. . . . . . . . 9
⊢ (𝜑 → 1 < (#‘(𝐾‘{𝑋}))) |
| 70 | | 1red 10055 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
| 71 | | hashcl 13147 |
. . . . . . . . . . . 12
⊢ ((𝐾‘{𝑋}) ∈ Fin → (#‘(𝐾‘{𝑋})) ∈
ℕ0) |
| 72 | 37, 71 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘(𝐾‘{𝑋})) ∈
ℕ0) |
| 73 | 72 | nn0red 11352 |
. . . . . . . . . 10
⊢ (𝜑 → (#‘(𝐾‘{𝑋})) ∈ ℝ) |
| 74 | 21 | subg0cl 17602 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ (SubGrp‘𝐻) → 0 ∈ 𝑊) |
| 75 | | ne0i 3921 |
. . . . . . . . . . . . 13
⊢ ( 0 ∈ 𝑊 → 𝑊 ≠ ∅) |
| 76 | 1, 74, 75 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ≠ ∅) |
| 77 | | hashnncl 13157 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Fin →
((#‘𝑊) ∈ ℕ
↔ 𝑊 ≠
∅)) |
| 78 | 17, 77 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((#‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅)) |
| 79 | 76, 78 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝑊) ∈ ℕ) |
| 80 | 79 | nngt0d 11064 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (#‘𝑊)) |
| 81 | | ltmul1 10873 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (#‘(𝐾‘{𝑋})) ∈ ℝ ∧ ((#‘𝑊) ∈ ℝ ∧ 0 <
(#‘𝑊))) → (1
< (#‘(𝐾‘{𝑋})) ↔ (1 · (#‘𝑊)) < ((#‘(𝐾‘{𝑋})) · (#‘𝑊)))) |
| 82 | 70, 73, 20, 80, 81 | syl112anc 1330 |
. . . . . . . . 9
⊢ (𝜑 → (1 < (#‘(𝐾‘{𝑋})) ↔ (1 · (#‘𝑊)) < ((#‘(𝐾‘{𝑋})) · (#‘𝑊)))) |
| 83 | 69, 82 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → (1 · (#‘𝑊)) < ((#‘(𝐾‘{𝑋})) · (#‘𝑊))) |
| 84 | 20 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → (#‘𝑊) ∈ ℂ) |
| 85 | 84 | mulid2d 10058 |
. . . . . . . 8
⊢ (𝜑 → (1 · (#‘𝑊)) = (#‘𝑊)) |
| 86 | | pgpfac.l |
. . . . . . . . . 10
⊢ ⊕ =
(LSSum‘𝐻) |
| 87 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Cntz‘𝐻) =
(Cntz‘𝐻) |
| 88 | | pgpfac.i |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) |
| 89 | | pgpfac.g |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 90 | 3 | subgabl 18241 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
| 91 | 89, 2, 90 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ Abel) |
| 92 | 87, 91, 41, 1 | ablcntzd 18260 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾‘{𝑋}) ⊆ ((Cntz‘𝐻)‘𝑊)) |
| 93 | 86, 21, 87, 41, 1, 88, 92, 37, 17 | lsmhash 18118 |
. . . . . . . . 9
⊢ (𝜑 → (#‘((𝐾‘{𝑋}) ⊕ 𝑊)) = ((#‘(𝐾‘{𝑋})) · (#‘𝑊))) |
| 94 | | pgpfac.s |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) |
| 95 | 94 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝜑 → (#‘((𝐾‘{𝑋}) ⊕ 𝑊)) = (#‘𝑈)) |
| 96 | 93, 95 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝜑 → ((#‘(𝐾‘{𝑋})) · (#‘𝑊)) = (#‘𝑈)) |
| 97 | 83, 85, 96 | 3brtr3d 4684 |
. . . . . . 7
⊢ (𝜑 → (#‘𝑊) < (#‘𝑈)) |
| 98 | 20, 97 | ltned 10173 |
. . . . . 6
⊢ (𝜑 → (#‘𝑊) ≠ (#‘𝑈)) |
| 99 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑊 = 𝑈 → (#‘𝑊) = (#‘𝑈)) |
| 100 | 99 | necon3i 2826 |
. . . . . 6
⊢
((#‘𝑊) ≠
(#‘𝑈) → 𝑊 ≠ 𝑈) |
| 101 | 98, 100 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑊 ≠ 𝑈) |
| 102 | | df-pss 3590 |
. . . . 5
⊢ (𝑊 ⊊ 𝑈 ↔ (𝑊 ⊆ 𝑈 ∧ 𝑊 ≠ 𝑈)) |
| 103 | 9, 101, 102 | sylanbrc 698 |
. . . 4
⊢ (𝜑 → 𝑊 ⊊ 𝑈) |
| 104 | | psseq1 3694 |
. . . . . 6
⊢ (𝑡 = 𝑊 → (𝑡 ⊊ 𝑈 ↔ 𝑊 ⊊ 𝑈)) |
| 105 | | eqeq2 2633 |
. . . . . . . 8
⊢ (𝑡 = 𝑊 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑊)) |
| 106 | 105 | anbi2d 740 |
. . . . . . 7
⊢ (𝑡 = 𝑊 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
| 107 | 106 | rexbidv 3052 |
. . . . . 6
⊢ (𝑡 = 𝑊 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊))) |
| 108 | 104, 107 | imbi12d 334 |
. . . . 5
⊢ (𝑡 = 𝑊 → ((𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑊 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))) |
| 109 | 108 | rspcv 3305 |
. . . 4
⊢ (𝑊 ∈ (SubGrp‘𝐺) → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑊 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)))) |
| 110 | 7, 8, 103, 109 | syl3c 66 |
. . 3
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊)) |
| 111 | | breq2 4657 |
. . . . 5
⊢ (𝑠 = 𝑎 → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd 𝑎)) |
| 112 | | oveq2 6658 |
. . . . . 6
⊢ (𝑠 = 𝑎 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑎)) |
| 113 | 112 | eqeq1d 2624 |
. . . . 5
⊢ (𝑠 = 𝑎 → ((𝐺 DProd 𝑠) = 𝑊 ↔ (𝐺 DProd 𝑎) = 𝑊)) |
| 114 | 111, 113 | anbi12d 747 |
. . . 4
⊢ (𝑠 = 𝑎 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) |
| 115 | 114 | cbvrexv 3172 |
. . 3
⊢
(∃𝑠 ∈
Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑊) ↔ ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)) |
| 116 | 110, 115 | sylib 208 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ Word 𝐶(𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊)) |
| 117 | | pgpfac.c |
. . 3
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
| 118 | 89 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺 ∈ Abel) |
| 119 | | pgpfac.p |
. . . 4
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
| 120 | 119 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑃 pGrp 𝐺) |
| 121 | 10 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐵 ∈ Fin) |
| 122 | 2 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 123 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) |
| 124 | | pgpfac.e |
. . 3
⊢ 𝐸 = (gEx‘𝐻) |
| 125 | 51 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐸 ≠ 1) |
| 126 | 38 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑋 ∈ 𝑈) |
| 127 | 50 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝑂‘𝑋) = 𝐸) |
| 128 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑊 ∈ (SubGrp‘𝐻)) |
| 129 | 88 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) |
| 130 | 94 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) |
| 131 | | simprl 794 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝑎 ∈ Word 𝐶) |
| 132 | | simprrl 804 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → 𝐺dom DProd 𝑎) |
| 133 | | simprrr 805 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → (𝐺 DProd 𝑎) = 𝑊) |
| 134 | | eqid 2622 |
. . 3
⊢ (𝑎 ++ 〈“(𝐾‘{𝑋})”〉) = (𝑎 ++ 〈“(𝐾‘{𝑋})”〉) |
| 135 | 11, 117, 118, 120, 121, 122, 123, 3, 31, 53, 124, 21, 86, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 | pgpfaclem1 18480 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑎 ∧ (𝐺 DProd 𝑎) = 𝑊))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |
| 136 | 116, 135 | rexlimddv 3035 |
1
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) |