| Step | Hyp | Ref
| Expression |
| 1 | | df-ceil 12594 |
. 2
⊢ ⌈ =
(𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) |
| 2 | | zre 11381 |
. . . . . . 7
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) |
| 3 | | lenegcon2 10533 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 ≤ -𝑧 ↔ 𝑧 ≤ -𝑥)) |
| 4 | | peano2re 10209 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
| 5 | 4 | anim2i 593 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈
ℝ)) |
| 6 | 5 | ancoms 469 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈
ℝ)) |
| 7 | | ltnegcon1 10529 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) →
(-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧)) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧)) |
| 9 | | recn 10026 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
| 10 | | 1cnd 10056 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 1 ∈
ℂ) |
| 11 | 9, 10 | negdid 10405 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → -(𝑥 + 1) = (-𝑥 + -1)) |
| 12 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(𝑥 + 1) = (-𝑥 + -1)) |
| 13 | 12 | breq1d 4663 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-(𝑥 + 1) < 𝑧 ↔ (-𝑥 + -1) < 𝑧)) |
| 14 | | renegcl 10344 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
| 15 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑥 ∈
ℝ) |
| 16 | | neg1rr 11125 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ |
| 17 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1
∈ ℝ) |
| 18 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈
ℝ) |
| 19 | 15, 17, 18 | ltaddsubd 10627 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 − -1))) |
| 20 | | recn 10026 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℂ) |
| 21 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ → 1 ∈
ℂ) |
| 22 | 20, 21 | subnegd 10399 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ → (𝑧 − -1) = (𝑧 + 1)) |
| 23 | 22 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − -1) = (𝑧 + 1)) |
| 24 | 23 | breq2d 4665 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑥 < (𝑧 − -1) ↔ -𝑥 < (𝑧 + 1))) |
| 25 | 19, 24 | bitrd 268 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 + 1))) |
| 26 | 8, 13, 25 | 3bitrd 294 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -𝑥 < (𝑧 + 1))) |
| 27 | 3, 26 | anbi12d 747 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
| 28 | 2, 27 | sylan2 491 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
| 29 | 28 | riotabidva 6627 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
(℩𝑧 ∈
ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = (℩𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
| 30 | 29 | negeqd 10275 |
. . . 4
⊢ (𝑥 ∈ ℝ →
-(℩𝑧 ∈
ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = -(℩𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
| 31 | | zbtwnre 11786 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
∃!𝑦 ∈ ℤ
(𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) |
| 32 | | breq2 4657 |
. . . . . . 7
⊢ (𝑦 = -𝑧 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ -𝑧)) |
| 33 | | breq1 4656 |
. . . . . . 7
⊢ (𝑦 = -𝑧 → (𝑦 < (𝑥 + 1) ↔ -𝑧 < (𝑥 + 1))) |
| 34 | 32, 33 | anbi12d 747 |
. . . . . 6
⊢ (𝑦 = -𝑧 → ((𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)))) |
| 35 | 34 | zriotaneg 11491 |
. . . . 5
⊢
(∃!𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)) → (℩𝑦 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) = -(℩𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)))) |
| 36 | 31, 35 | syl 17 |
. . . 4
⊢ (𝑥 ∈ ℝ →
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) = -(℩𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)))) |
| 37 | | flval 12595 |
. . . . . 6
⊢ (-𝑥 ∈ ℝ →
(⌊‘-𝑥) =
(℩𝑧 ∈
ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
| 38 | 14, 37 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
(⌊‘-𝑥) =
(℩𝑧 ∈
ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
| 39 | 38 | negeqd 10275 |
. . . 4
⊢ (𝑥 ∈ ℝ →
-(⌊‘-𝑥) =
-(℩𝑧 ∈
ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
| 40 | 30, 36, 39 | 3eqtr4rd 2667 |
. . 3
⊢ (𝑥 ∈ ℝ →
-(⌊‘-𝑥) =
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) |
| 41 | 40 | mpteq2ia 4740 |
. 2
⊢ (𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) =
(𝑥 ∈ ℝ ↦
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) |
| 42 | 1, 41 | eqtri 2644 |
1
⊢ ⌈ =
(𝑥 ∈ ℝ ↦
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) |