![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eucalgcvga | Structured version Visualization version GIF version |
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
eucalg.2 | ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) |
eucalgcvga.3 | ⊢ 𝑁 = (2nd ‘𝐴) |
Ref | Expression |
---|---|
eucalgcvga | ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucalgcvga.3 | . . . . . . 7 ⊢ 𝑁 = (2nd ‘𝐴) | |
2 | xp2nd 7199 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘𝐴) ∈ ℕ0) | |
3 | 1, 2 | syl5eqel 2705 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0) |
4 | eluznn0 11757 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) | |
5 | 3, 4 | sylan 488 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) |
6 | nn0uz 11722 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | eucalg.2 | . . . . . . 7 ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) | |
8 | 0zd 11389 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ) | |
9 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
10 | eucalgval.1 | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
11 | 10 | eucalgf 15296 | . . . . . . . 8 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
13 | 6, 7, 8, 9, 12 | algrf 15286 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0)) |
14 | 13 | ffvelrnda 6359 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
15 | 5, 14 | syldan 487 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
16 | fvres 6207 | . . . 4 ⊢ ((𝑅‘𝐾) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) |
18 | simpl 473 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
19 | fvres 6207 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd ‘𝐴)) | |
20 | 19, 1 | syl6eqr 2674 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁) |
21 | 20 | fveq2d 6195 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ≥‘𝑁)) |
22 | 21 | eleq2d 2687 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ≥‘𝑁))) |
23 | 22 | biimpar 502 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴))) |
24 | f2ndres 7191 | . . . . 5 ⊢ (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0 | |
25 | 10 | eucalglt 15298 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸‘𝑧)) ≠ 0 → (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
26 | 11 | ffvelrni 6358 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸‘𝑧) ∈ (ℕ0 × ℕ0)) |
27 | fvres 6207 | . . . . . . . 8 ⊢ ((𝐸‘𝑧) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) | |
28 | 26, 27 | syl 17 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) |
29 | 28 | neeq1d 2853 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 ↔ (2nd ‘(𝐸‘𝑧)) ≠ 0)) |
30 | fvres 6207 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd ‘𝑧)) | |
31 | 28, 30 | breq12d 4666 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
32 | 25, 29, 31 | 3imtr4d 283 | . . . . 5 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧))) |
33 | eqid 2622 | . . . . 5 ⊢ ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) | |
34 | 11, 7, 24, 32, 33 | algcvga 15292 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0)) |
35 | 18, 23, 34 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0) |
36 | 17, 35 | eqtr3d 2658 | . 2 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (2nd ‘(𝑅‘𝐾)) = 0) |
37 | 36 | ex 450 | 1 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ifcif 4086 {csn 4177 〈cop 4183 class class class wbr 4653 × cxp 5112 ↾ cres 5116 ∘ ccom 5118 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 1st c1st 7166 2nd c2nd 7167 0cc0 9936 < clt 10074 ℕ0cn0 11292 ℤ≥cuz 11687 mod cmo 12668 seqcseq 12801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 |
This theorem is referenced by: eucalg 15300 |
Copyright terms: Public domain | W3C validator |