![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eucalgf | Structured version Visualization version GIF version |
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
Ref | Expression |
---|---|
eucalgf | ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 11053 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | |
2 | 1 | adantl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0) |
3 | 2 | neneqd 2799 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 = 0) |
4 | 3 | iffalsed 4097 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑦, (𝑥 mod 𝑦)〉) |
5 | nnnn0 11299 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
6 | 5 | adantl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0) |
7 | nn0z 11400 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ) | |
8 | zmodcl 12690 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) | |
9 | 7, 8 | sylan 488 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) |
10 | opelxpi 5148 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ0 ∧ (𝑥 mod 𝑦) ∈ ℕ0) → 〈𝑦, (𝑥 mod 𝑦)〉 ∈ (ℕ0 × ℕ0)) | |
11 | 6, 9, 10 | syl2anc 693 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 〈𝑦, (𝑥 mod 𝑦)〉 ∈ (ℕ0 × ℕ0)) |
12 | 4, 11 | eqeltrd 2701 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
13 | 12 | adantlr 751 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
14 | iftrue 4092 | . . . . . 6 ⊢ (𝑦 = 0 → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) | |
15 | 14 | adantl 482 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) |
16 | opelxpi 5148 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) | |
17 | 16 | adantr 481 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) |
18 | 15, 17 | eqeltrd 2701 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
19 | simpr 477 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
20 | elnn0 11294 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0)) | |
21 | 19, 20 | sylib 208 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0)) |
22 | 13, 18, 21 | mpjaodan 827 | . . 3 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
23 | 22 | rgen2a 2977 | . 2 ⊢ ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) |
24 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
25 | 24 | fmpt2 7237 | . 2 ⊢ (∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
26 | 23, 25 | mpbi 220 | 1 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ifcif 4086 〈cop 4183 × cxp 5112 ⟶wf 5884 (class class class)co 6650 ↦ cmpt2 6652 0cc0 9936 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 mod cmo 12668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-mod 12669 |
This theorem is referenced by: eucalgcvga 15299 eucalg 15300 |
Copyright terms: Public domain | W3C validator |