MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalglt Structured version   Visualization version   GIF version

Theorem eucalglt 15298
Description: The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalglt (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 15295 . . . . . . . 8 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32adantr 481 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
4 simpr 477 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) ≠ 0)
5 iftrue 4092 . . . . . . . . . . . . . 14 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
65eqeq2d 2632 . . . . . . . . . . . . 13 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) ↔ (𝐸𝑋) = 𝑋))
7 fveq2 6191 . . . . . . . . . . . . 13 ((𝐸𝑋) = 𝑋 → (2nd ‘(𝐸𝑋)) = (2nd𝑋))
86, 7syl6bi 243 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = (2nd𝑋)))
9 eqeq2 2633 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((2nd ‘(𝐸𝑋)) = (2nd𝑋) ↔ (2nd ‘(𝐸𝑋)) = 0))
108, 9sylibd 229 . . . . . . . . . . 11 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = 0))
113, 10syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) = 0 → (2nd ‘(𝐸𝑋)) = 0))
1211necon3ad 2807 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → ¬ (2nd𝑋) = 0))
134, 12mpd 15 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ¬ (2nd𝑋) = 0)
1413iffalsed 4097 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
153, 14eqtrd 2656 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
1615fveq2d 6195 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
17 fvex 6201 . . . . . 6 (2nd𝑋) ∈ V
18 fvex 6201 . . . . . 6 ( mod ‘𝑋) ∈ V
1917, 18op2nd 7177 . . . . 5 (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ( mod ‘𝑋)
2016, 19syl6eq 2672 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ( mod ‘𝑋))
21 1st2nd2 7205 . . . . . . 7 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2221adantr 481 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2322fveq2d 6195 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
24 df-ov 6653 . . . . 5 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
2523, 24syl6eqr 2674 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
2620, 25eqtrd 2656 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ((1st𝑋) mod (2nd𝑋)))
27 xp1st 7198 . . . . . 6 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
2827adantr 481 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℕ0)
2928nn0red 11352 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℝ)
30 xp2nd 7199 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
3130adantr 481 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ0)
32 elnn0 11294 . . . . . . . 8 ((2nd𝑋) ∈ ℕ0 ↔ ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3331, 32sylib 208 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3433ord 392 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (¬ (2nd𝑋) ∈ ℕ → (2nd𝑋) = 0))
3513, 34mt3d 140 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ)
3635nnrpd 11870 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℝ+)
37 modlt 12679 . . . 4 (((1st𝑋) ∈ ℝ ∧ (2nd𝑋) ∈ ℝ+) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
3829, 36, 37syl2anc 693 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
3926, 38eqbrtrd 4675 . 2 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) < (2nd𝑋))
4039ex 450 1 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  ifcif 4086  cop 4183   class class class wbr 4653   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cr 9935  0cc0 9936   < clt 10074  cn 11020  0cn0 11292  +crp 11832   mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  eucalgcvga  15299
  Copyright terms: Public domain W3C validator