![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eucrct2eupth1 | Structured version Visualization version GIF version |
Description: Removing one edge (𝐼‘(𝐹‘𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 〈𝐹, 𝑃〉 results in a graph 𝑆 with an Eulerian path 〈𝐻, 𝑄〉. This is the special case of eucrct2eupth 27105 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) |
Ref | Expression |
---|---|
eucrct2eupth1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eucrct2eupth1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eucrct2eupth1.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eucrct2eupth1.c | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
eucrct2eupth1.s | ⊢ (Vtx‘𝑆) = 𝑉 |
eucrct2eupth1.g | ⊢ (𝜑 → 0 < (#‘𝐹)) |
eucrct2eupth1.n | ⊢ (𝜑 → 𝑁 = ((#‘𝐹) − 1)) |
eucrct2eupth1.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
eucrct2eupth1.h | ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
eucrct2eupth1.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
Ref | Expression |
---|---|
eucrct2eupth1 | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucrct2eupth1.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eucrct2eupth1.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eucrct2eupth1.d | . 2 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
4 | eucrct2eupth1.n | . . 3 ⊢ (𝜑 → 𝑁 = ((#‘𝐹) − 1)) | |
5 | eucrct2eupth1.g | . . . . 5 ⊢ (𝜑 → 0 < (#‘𝐹)) | |
6 | eupthiswlk 27072 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
7 | wlkcl 26511 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0) | |
8 | nn0z 11400 | . . . . . . . . . 10 ⊢ ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ ℤ) | |
9 | 8 | anim1i 592 | . . . . . . . . 9 ⊢ (((#‘𝐹) ∈ ℕ0 ∧ 0 < (#‘𝐹)) → ((#‘𝐹) ∈ ℤ ∧ 0 < (#‘𝐹))) |
10 | elnnz 11387 | . . . . . . . . 9 ⊢ ((#‘𝐹) ∈ ℕ ↔ ((#‘𝐹) ∈ ℤ ∧ 0 < (#‘𝐹))) | |
11 | 9, 10 | sylibr 224 | . . . . . . . 8 ⊢ (((#‘𝐹) ∈ ℕ0 ∧ 0 < (#‘𝐹)) → (#‘𝐹) ∈ ℕ) |
12 | 11 | ex 450 | . . . . . . 7 ⊢ ((#‘𝐹) ∈ ℕ0 → (0 < (#‘𝐹) → (#‘𝐹) ∈ ℕ)) |
13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (0 < (#‘𝐹) → (#‘𝐹) ∈ ℕ)) |
14 | 3, 6, 13 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (0 < (#‘𝐹) → (#‘𝐹) ∈ ℕ)) |
15 | 5, 14 | mpd 15 | . . . 4 ⊢ (𝜑 → (#‘𝐹) ∈ ℕ) |
16 | fzo0end 12560 | . . . 4 ⊢ ((#‘𝐹) ∈ ℕ → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) |
18 | 4, 17 | eqeltrd 2701 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) |
19 | eucrct2eupth1.e | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
20 | eucrct2eupth1.h | . 2 ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) | |
21 | eucrct2eupth1.q | . 2 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
22 | eucrct2eupth1.s | . 2 ⊢ (Vtx‘𝑆) = 𝑉 | |
23 | 1, 2, 3, 18, 19, 20, 21, 22 | eupthres 27075 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ↾ cres 5116 “ cima 5117 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 < clt 10074 − cmin 10266 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ...cfz 12326 ..^cfzo 12465 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 Walkscwlks 26492 Circuitsccrcts 26679 EulerPathsceupth 27057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-substr 13303 df-wlks 26495 df-trls 26589 df-eupth 27058 |
This theorem is referenced by: eucrct2eupth 27105 |
Copyright terms: Public domain | W3C validator |