![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnnz | Structured version Visualization version GIF version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elnnz | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11027 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | orc 400 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
3 | nngt0 11049 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 1, 2, 3 | jca31 557 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
5 | idd 24 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)) | |
6 | lt0neg2 10535 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0)) | |
7 | renegcl 10344 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℝ → -𝑁 ∈ ℝ) | |
8 | 0re 10040 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℝ | |
9 | ltnsym 10135 | . . . . . . . . . . . . 13 ⊢ ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁)) | |
10 | 7, 8, 9 | sylancl 694 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁)) |
11 | 6, 10 | sylbid 230 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁)) |
12 | 11 | imp 445 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁) |
13 | nngt0 11049 | . . . . . . . . . 10 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
14 | 12, 13 | nsyl 135 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ) |
15 | gt0ne0 10493 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0) | |
16 | 15 | neneqd 2799 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
17 | ioran 511 | . . . . . . . . 9 ⊢ (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0)) | |
18 | 14, 16, 17 | sylanbrc 698 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
19 | 18 | pm2.21d 118 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ)) |
20 | 5, 19 | jaod 395 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)) |
21 | 20 | ex 450 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))) |
22 | 21 | com23 86 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁 → 𝑁 ∈ ℕ))) |
23 | 22 | imp31 448 | . . 3 ⊢ (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
24 | 4, 23 | impbii 199 | . 2 ⊢ (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
25 | elz 11379 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
26 | 3orrot 1044 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
27 | 3orass 1040 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
28 | 26, 27 | bitri 264 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
29 | 28 | anbi2i 730 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
30 | 25, 29 | bitri 264 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
31 | 30 | anbi1i 731 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
32 | 24, 31 | bitr4i 267 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∨ w3o 1036 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ℝcr 9935 0cc0 9936 < clt 10074 -cneg 10267 ℕcn 11020 ℤcz 11377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-z 11378 |
This theorem is referenced by: elnn0z 11390 nnssz 11397 elnnz1 11403 znnsub 11423 nn0ge0div 11446 msqznn 11459 lbfzo0 12507 elfzo0z 12509 fzofzim 12514 fzo1fzo0n0 12518 elfzodifsumelfzo 12533 elfznelfzo 12573 nnesq 12988 swrdlsw 13452 2swrd1eqwrdeq 13454 swrdccatin12lem3 13490 repswswrd 13531 cshwcsh2id 13574 swrd2lsw 13695 2swrd2eqwrdeq 13696 nnabscl 14065 iseralt 14415 sqrt2irrlem 14977 sqrt2irrlemOLD 14978 nndivdvds 14989 oddge22np1 15073 evennn2n 15075 nno 15098 nnoddm1d2 15102 ndvdsadd 15134 bitsfzolem 15156 sqgcd 15278 qredeu 15372 prmind2 15398 qgt0numnn 15459 oddprm 15515 pythagtriplem6 15526 pythagtriplem11 15530 pythagtriplem13 15532 pythagtriplem19 15538 pc2dvds 15583 pcadd 15593 prmreclem3 15622 4sqlem11 15659 4sqlem12 15660 prmgaplem7 15761 cshwshashlem2 15803 subgmulg 17608 znidomb 19910 sgmnncl 24873 muinv 24919 mersenne 24952 bposlem6 25014 gausslemma2dlem1a 25090 lgseisenlem1 25100 lgsquadlem1 25105 lgsquadlem2 25106 2sqlem8 25151 dchrisum0flblem2 25198 clwlkclwwlklem2a2 26894 clwlkclwwlklem2a4 26898 clwlkclwwlklem2a 26899 eucrct2eupth1 27104 nn0prpwlem 32317 poimirlem7 33416 poimirlem29 33438 mblfinlem2 33447 irrapxlem4 37389 rmspecnonsq 37472 rmynn 37523 jm2.24 37530 jm2.23 37563 jm2.20nn 37564 jm2.27a 37572 jm2.27c 37574 rmydioph 37581 jm3.1lem3 37586 sumnnodd 39862 dvnxpaek 40157 dirkertrigeqlem3 40317 fourierdlem47 40370 fouriersw 40448 etransclem15 40466 etransclem24 40475 etransclem25 40476 etransclem35 40486 etransclem48 40499 zm1nn 41316 iccpartigtl 41359 nnoALTV 41606 ztprmneprm 42125 blennngt2o2 42386 |
Copyright terms: Public domain | W3C validator |