![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-fl | Structured version Visualization version GIF version |
Description: Example for df-fl 12593. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-fl | ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10039 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | 3re 11094 | . . . . 5 ⊢ 3 ∈ ℝ | |
3 | 2 | rehalfcli 11281 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
4 | 2cn 11091 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 4 | mulid2i 10043 | . . . . . 6 ⊢ (1 · 2) = 2 |
6 | 2lt3 11195 | . . . . . 6 ⊢ 2 < 3 | |
7 | 5, 6 | eqbrtri 4674 | . . . . 5 ⊢ (1 · 2) < 3 |
8 | 2pos 11112 | . . . . . 6 ⊢ 0 < 2 | |
9 | 2re 11090 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
10 | 1, 2, 9 | ltmuldivi 10944 | . . . . . 6 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
12 | 7, 11 | mpbi 220 | . . . 4 ⊢ 1 < (3 / 2) |
13 | 1, 3, 12 | ltleii 10160 | . . 3 ⊢ 1 ≤ (3 / 2) |
14 | 3lt4 11197 | . . . . . 6 ⊢ 3 < 4 | |
15 | 2t2e4 11177 | . . . . . 6 ⊢ (2 · 2) = 4 | |
16 | 14, 15 | breqtrri 4680 | . . . . 5 ⊢ 3 < (2 · 2) |
17 | 9, 8 | pm3.2i 471 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
18 | ltdivmul 10898 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
19 | 2, 9, 17, 18 | mp3an 1424 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
20 | 16, 19 | mpbir 221 | . . . 4 ⊢ (3 / 2) < 2 |
21 | df-2 11079 | . . . 4 ⊢ 2 = (1 + 1) | |
22 | 20, 21 | breqtri 4678 | . . 3 ⊢ (3 / 2) < (1 + 1) |
23 | 1z 11407 | . . . 4 ⊢ 1 ∈ ℤ | |
24 | flbi 12617 | . . . 4 ⊢ (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))) | |
25 | 3, 23, 24 | mp2an 708 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))) |
26 | 13, 22, 25 | mpbir2an 955 | . 2 ⊢ (⌊‘(3 / 2)) = 1 |
27 | 9 | renegcli 10342 | . . . 4 ⊢ -2 ∈ ℝ |
28 | 3 | renegcli 10342 | . . . 4 ⊢ -(3 / 2) ∈ ℝ |
29 | 3, 9 | ltnegi 10572 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ -2 < -(3 / 2)) |
30 | 20, 29 | mpbi 220 | . . . 4 ⊢ -2 < -(3 / 2) |
31 | 27, 28, 30 | ltleii 10160 | . . 3 ⊢ -2 ≤ -(3 / 2) |
32 | 4 | negcli 10349 | . . . . . . 7 ⊢ -2 ∈ ℂ |
33 | ax-1cn 9994 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
34 | negdi2 10339 | . . . . . . 7 ⊢ ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1)) | |
35 | 32, 33, 34 | mp2an 708 | . . . . . 6 ⊢ -(-2 + 1) = (--2 − 1) |
36 | 4 | negnegi 10351 | . . . . . . 7 ⊢ --2 = 2 |
37 | 36 | oveq1i 6660 | . . . . . 6 ⊢ (--2 − 1) = (2 − 1) |
38 | 35, 37 | eqtri 2644 | . . . . 5 ⊢ -(-2 + 1) = (2 − 1) |
39 | 2m1e1 11135 | . . . . . 6 ⊢ (2 − 1) = 1 | |
40 | 39, 12 | eqbrtri 4674 | . . . . 5 ⊢ (2 − 1) < (3 / 2) |
41 | 38, 40 | eqbrtri 4674 | . . . 4 ⊢ -(-2 + 1) < (3 / 2) |
42 | 27, 1 | readdcli 10053 | . . . . 5 ⊢ (-2 + 1) ∈ ℝ |
43 | 42, 3 | ltnegcon1i 10579 | . . . 4 ⊢ (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1)) |
44 | 41, 43 | mpbi 220 | . . 3 ⊢ -(3 / 2) < (-2 + 1) |
45 | 2z 11409 | . . . . 5 ⊢ 2 ∈ ℤ | |
46 | znegcl 11412 | . . . . 5 ⊢ (2 ∈ ℤ → -2 ∈ ℤ) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ -2 ∈ ℤ |
48 | flbi 12617 | . . . 4 ⊢ ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))) | |
49 | 28, 47, 48 | mp2an 708 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))) |
50 | 31, 44, 49 | mpbir2an 955 | . 2 ⊢ (⌊‘-(3 / 2)) = -2 |
51 | 26, 50 | pm3.2i 471 | 1 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 < clt 10074 ≤ cle 10075 − cmin 10266 -cneg 10267 / cdiv 10684 2c2 11070 3c3 11071 4c4 11072 ℤcz 11377 ⌊cfl 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-fl 12593 |
This theorem is referenced by: ex-ceil 27305 |
Copyright terms: Public domain | W3C validator |