![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-mod | Structured version Visualization version GIF version |
Description: Example for df-mod 12669. (Contributed by AV, 3-Sep-2021.) |
Ref | Expression |
---|---|
ex-mod | ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 11160 | . . . . 5 ⊢ (3 + 2) = 5 | |
2 | 1 | eqcomi 2631 | . . . 4 ⊢ 5 = (3 + 2) |
3 | 2 | oveq1i 6660 | . . 3 ⊢ (5 mod 3) = ((3 + 2) mod 3) |
4 | 2nn0 11309 | . . . 4 ⊢ 2 ∈ ℕ0 | |
5 | 3nn 11186 | . . . 4 ⊢ 3 ∈ ℕ | |
6 | 2lt3 11195 | . . . 4 ⊢ 2 < 3 | |
7 | addmodid 12718 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3) → ((3 + 2) mod 3) = 2) | |
8 | 4, 5, 6, 7 | mp3an 1424 | . . 3 ⊢ ((3 + 2) mod 3) = 2 |
9 | 3, 8 | eqtri 2644 | . 2 ⊢ (5 mod 3) = 2 |
10 | 2re 11090 | . . . . . 6 ⊢ 2 ∈ ℝ | |
11 | 2lt7 11213 | . . . . . 6 ⊢ 2 < 7 | |
12 | 10, 11 | ltneii 10150 | . . . . 5 ⊢ 2 ≠ 7 |
13 | 2nn 11185 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
14 | 1lt2 11194 | . . . . . . . 8 ⊢ 1 < 2 | |
15 | 13, 14 | pm3.2i 471 | . . . . . . 7 ⊢ (2 ∈ ℕ ∧ 1 < 2) |
16 | eluz2b2 11761 | . . . . . . 7 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℕ ∧ 1 < 2)) | |
17 | 15, 16 | mpbir 221 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
18 | 7prm 15817 | . . . . . 6 ⊢ 7 ∈ ℙ | |
19 | dvdsprm 15415 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 7 ∈ ℙ) → (2 ∥ 7 ↔ 2 = 7)) | |
20 | 17, 18, 19 | mp2an 708 | . . . . 5 ⊢ (2 ∥ 7 ↔ 2 = 7) |
21 | 12, 20 | nemtbir 2889 | . . . 4 ⊢ ¬ 2 ∥ 7 |
22 | 2z 11409 | . . . . 5 ⊢ 2 ∈ ℤ | |
23 | 7nn 11190 | . . . . . 6 ⊢ 7 ∈ ℕ | |
24 | 23 | nnzi 11401 | . . . . 5 ⊢ 7 ∈ ℤ |
25 | dvdsnegb 14999 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 7 ∈ ℤ) → (2 ∥ 7 ↔ 2 ∥ -7)) | |
26 | 22, 24, 25 | mp2an 708 | . . . 4 ⊢ (2 ∥ 7 ↔ 2 ∥ -7) |
27 | 21, 26 | mtbi 312 | . . 3 ⊢ ¬ 2 ∥ -7 |
28 | znegcl 11412 | . . . 4 ⊢ (7 ∈ ℤ → -7 ∈ ℤ) | |
29 | mod2eq1n2dvds 15071 | . . . 4 ⊢ (-7 ∈ ℤ → ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7)) | |
30 | 24, 28, 29 | mp2b 10 | . . 3 ⊢ ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7) |
31 | 27, 30 | mpbir 221 | . 2 ⊢ (-7 mod 2) = 1 |
32 | 9, 31 | pm3.2i 471 | 1 ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 1c1 9937 + caddc 9939 < clt 10074 -cneg 10267 ℕcn 11020 2c2 11070 3c3 11071 5c5 11073 7c7 11075 ℕ0cn0 11292 ℤcz 11377 ℤ≥cuz 11687 mod cmo 12668 ∥ cdvds 14983 ℙcprime 15385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-ico 12181 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-prm 15386 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |