![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gtneii | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
gtneii | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . 2 ⊢ 𝐴 < 𝐵 | |
3 | ltne 10134 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 1, 2, 3 | mp2an 708 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ℝcr 9935 < clt 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 |
This theorem is referenced by: ltneii 10150 fztpval 12402 geo2sum 14604 bpoly4 14790 ene1 14938 3dvds 15052 3dvdsOLD 15053 3lcm2e6 15440 resslem 15933 rescco 16492 oppgtset 17782 mgpsca 18496 mgptset 18497 mgpds 18499 cnfldfun 19758 psgnodpmr 19936 matsca 20221 matvsca 20222 tuslem 22071 setsmsds 22281 tngds 22452 logbrec 24520 log2le1 24677 2lgsoddprmlem3a 25135 2lgsoddprmlem3b 25136 2lgsoddprmlem3c 25137 2lgsoddprmlem3d 25138 konigsberglem2 27115 ex-dif 27280 ex-in 27282 ex-pss 27285 ex-res 27298 dp20u 29585 dp20h 29586 dp2clq 29588 dp2lt10 29591 dp2lt 29592 dplti 29613 dpexpp1 29616 oppgle 29653 resvvsca 29834 zlmds 30008 zlmtset 30009 ballotlemi1 30564 sgnnbi 30607 sgnpbi 30608 signswch 30638 itgexpif 30684 hgt750lemd 30726 hgt750lem 30729 fdc 33541 areaquad 37802 stirlinglem4 40294 stirlinglem13 40303 stirlinglem14 40304 stirlingr 40307 dirker2re 40309 dirkerdenne0 40310 dirkerre 40312 dirkertrigeqlem1 40315 dirkercncflem2 40321 dirkercncflem4 40323 fourierdlem16 40340 fourierdlem21 40345 fourierdlem22 40346 fourierdlem66 40389 fourierdlem83 40406 fourierdlem103 40426 fourierdlem104 40427 sqwvfoura 40445 sqwvfourb 40446 fourierswlem 40447 fouriersw 40448 etransclem46 40497 fmtnoprmfac2lem1 41478 zlmodzxzldeplem 42287 |
Copyright terms: Public domain | W3C validator |