MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcco Structured version   Visualization version   GIF version

Theorem estrcco 16770
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrcco.o · = (comp‘𝐶)
estrcco.x (𝜑𝑋𝑈)
estrcco.y (𝜑𝑌𝑈)
estrcco.z (𝜑𝑍𝑈)
estrcco.a 𝐴 = (Base‘𝑋)
estrcco.b 𝐵 = (Base‘𝑌)
estrcco.d 𝐷 = (Base‘𝑍)
estrcco.f (𝜑𝐹:𝐴𝐵)
estrcco.g (𝜑𝐺:𝐵𝐷)
Assertion
Ref Expression
estrcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem estrcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . . 4 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . . 4 (𝜑𝑈𝑉)
3 estrcco.o . . . 4 · = (comp‘𝐶)
41, 2, 3estrccofval 16769 . . 3 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
5 fveq2 6191 . . . . . . 7 (𝑧 = 𝑍 → (Base‘𝑧) = (Base‘𝑍))
65adantl 482 . . . . . 6 ((𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍) → (Base‘𝑧) = (Base‘𝑍))
76adantl 482 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘𝑧) = (Base‘𝑍))
8 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
98fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
10 estrcco.x . . . . . . . . 9 (𝜑𝑋𝑈)
11 estrcco.y . . . . . . . . 9 (𝜑𝑌𝑈)
12 op2ndg 7181 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1310, 11, 12syl2anc 693 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1413adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
159, 14eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
1615fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(2nd𝑣)) = (Base‘𝑌))
177, 16oveq12d 6668 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))) = ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))
188fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
1918fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘(1st ‘⟨𝑋, 𝑌⟩)))
20 op1stg 7180 . . . . . . . . 9 ((𝑋𝑈𝑌𝑈) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2110, 11, 20syl2anc 693 . . . . . . . 8 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2221fveq2d 6195 . . . . . . 7 (𝜑 → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2322adantr 481 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st ‘⟨𝑋, 𝑌⟩)) = (Base‘𝑋))
2419, 23eqtrd 2656 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (Base‘(1st𝑣)) = (Base‘𝑋))
2516, 24oveq12d 6668 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
26 eqidd 2623 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2717, 25, 26mpt2eq123dv 6717 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) ↦ (𝑔𝑓)) = (𝑔 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↦ (𝑔𝑓)))
28 opelxpi 5148 . . . 4 ((𝑋𝑈𝑌𝑈) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
2910, 11, 28syl2anc 693 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
30 estrcco.z . . 3 (𝜑𝑍𝑈)
31 ovex 6678 . . . . 5 ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ∈ V
32 ovex 6678 . . . . 5 ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∈ V
3331, 32mpt2ex 7247 . . . 4 (𝑔 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V
3433a1i 11 . . 3 (𝜑 → (𝑔 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↦ (𝑔𝑓)) ∈ V)
354, 27, 29, 30, 34ovmpt2d 6788 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)), 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↦ (𝑔𝑓)))
36 simpl 473 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑔 = 𝐺)
37 simpr 477 . . . 4 ((𝑔 = 𝐺𝑓 = 𝐹) → 𝑓 = 𝐹)
3836, 37coeq12d 5286 . . 3 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔𝑓) = (𝐺𝐹))
3938adantl 482 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
40 estrcco.g . . . 4 (𝜑𝐺:𝐵𝐷)
41 estrcco.b . . . . . . 7 𝐵 = (Base‘𝑌)
4241a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝑌))
4342eqcomd 2628 . . . . 5 (𝜑 → (Base‘𝑌) = 𝐵)
44 estrcco.d . . . . . . 7 𝐷 = (Base‘𝑍)
4544a1i 11 . . . . . 6 (𝜑𝐷 = (Base‘𝑍))
4645eqcomd 2628 . . . . 5 (𝜑 → (Base‘𝑍) = 𝐷)
4743, 46feq23d 6040 . . . 4 (𝜑 → (𝐺:(Base‘𝑌)⟶(Base‘𝑍) ↔ 𝐺:𝐵𝐷))
4840, 47mpbird 247 . . 3 (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))
49 fvexd 6203 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
50 fvexd 6203 . . . 4 (𝜑 → (Base‘𝑌) ∈ V)
51 elmapg 7870 . . . 4 (((Base‘𝑍) ∈ V ∧ (Base‘𝑌) ∈ V) → (𝐺 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ↔ 𝐺:(Base‘𝑌)⟶(Base‘𝑍)))
5249, 50, 51syl2anc 693 . . 3 (𝜑 → (𝐺 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ↔ 𝐺:(Base‘𝑌)⟶(Base‘𝑍)))
5348, 52mpbird 247 . 2 (𝜑𝐺 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))
54 estrcco.f . . . 4 (𝜑𝐹:𝐴𝐵)
55 estrcco.a . . . . . . 7 𝐴 = (Base‘𝑋)
5655a1i 11 . . . . . 6 (𝜑𝐴 = (Base‘𝑋))
5756eqcomd 2628 . . . . 5 (𝜑 → (Base‘𝑋) = 𝐴)
5857, 43feq23d 6040 . . . 4 (𝜑 → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝐹:𝐴𝐵))
5954, 58mpbird 247 . . 3 (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))
60 fvexd 6203 . . . 4 (𝜑 → (Base‘𝑋) ∈ V)
61 elmapg 7870 . . . 4 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝐹 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↔ 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
6250, 60, 61syl2anc 693 . . 3 (𝜑 → (𝐹 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↔ 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
6359, 62mpbird 247 . 2 (𝜑𝐹 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
64 coexg 7117 . . 3 ((𝐺 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ∧ 𝐹 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))) → (𝐺𝐹) ∈ V)
6553, 63, 64syl2anc 693 . 2 (𝜑 → (𝐺𝐹) ∈ V)
6635, 39, 53, 63, 65ovmpt2d 6788 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   × cxp 5112  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Basecbs 15857  compcco 15953  ExtStrCatcestrc 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-estrc 16763
This theorem is referenced by:  estrccatid  16772  funcestrcsetclem9  16788  funcsetcestrclem9  16803  rngcco  41971  rnghmsubcsetclem2  41976  ringcco  42017  rhmsubcsetclem2  42022
  Copyright terms: Public domain W3C validator