| Step | Hyp | Ref
| Expression |
| 1 | | wlkp1.w |
. . . . . 6
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 2 | | wlkp1.i |
. . . . . . 7
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | 2 | wlkf 26510 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 4 | | wrdf 13310 |
. . . . . . 7
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) |
| 5 | | wlkp1.n |
. . . . . . . . . 10
⊢ 𝑁 = (#‘𝐹) |
| 6 | 5 | eqcomi 2631 |
. . . . . . . . 9
⊢
(#‘𝐹) = 𝑁 |
| 7 | 6 | oveq2i 6661 |
. . . . . . . 8
⊢
(0..^(#‘𝐹)) =
(0..^𝑁) |
| 8 | 7 | feq2i 6037 |
. . . . . . 7
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 ↔ 𝐹:(0..^𝑁)⟶dom 𝐼) |
| 9 | 4, 8 | sylib 208 |
. . . . . 6
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^𝑁)⟶dom 𝐼) |
| 10 | 1, 3, 9 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐹:(0..^𝑁)⟶dom 𝐼) |
| 11 | | fvex 6201 |
. . . . . . . 8
⊢
(#‘𝐹) ∈
V |
| 12 | 5, 11 | eqeltri 2697 |
. . . . . . 7
⊢ 𝑁 ∈ V |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ V) |
| 14 | | wlkp1.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ V) |
| 15 | | snidg 4206 |
. . . . . . . 8
⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵}) |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ {𝐵}) |
| 17 | | wlkp1.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| 18 | | dmsnopg 5606 |
. . . . . . . 8
⊢ (𝐸 ∈ (Edg‘𝐺) → dom {〈𝐵, 𝐸〉} = {𝐵}) |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom {〈𝐵, 𝐸〉} = {𝐵}) |
| 20 | 16, 19 | eleqtrrd 2704 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ dom {〈𝐵, 𝐸〉}) |
| 21 | 13, 20 | fsnd 6179 |
. . . . 5
⊢ (𝜑 → {〈𝑁, 𝐵〉}:{𝑁}⟶dom {〈𝐵, 𝐸〉}) |
| 22 | | fzodisjsn 12505 |
. . . . . 6
⊢
((0..^𝑁) ∩
{𝑁}) =
∅ |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅) |
| 24 | | fun 6066 |
. . . . 5
⊢ (((𝐹:(0..^𝑁)⟶dom 𝐼 ∧ {〈𝑁, 𝐵〉}:{𝑁}⟶dom {〈𝐵, 𝐸〉}) ∧ ((0..^𝑁) ∩ {𝑁}) = ∅) → (𝐹 ∪ {〈𝑁, 𝐵〉}):((0..^𝑁) ∪ {𝑁})⟶(dom 𝐼 ∪ dom {〈𝐵, 𝐸〉})) |
| 25 | 10, 21, 23, 24 | syl21anc 1325 |
. . . 4
⊢ (𝜑 → (𝐹 ∪ {〈𝑁, 𝐵〉}):((0..^𝑁) ∪ {𝑁})⟶(dom 𝐼 ∪ dom {〈𝐵, 𝐸〉})) |
| 26 | | wlkp1.h |
. . . . . 6
⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| 27 | 26 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉})) |
| 28 | | wlkp1.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 29 | | wlkp1.f |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐼) |
| 30 | | wlkp1.a |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 31 | | wlkp1.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 32 | | wlkp1.d |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| 33 | | wlkp1.x |
. . . . . . . 8
⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| 34 | | wlkp1.u |
. . . . . . . 8
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| 35 | 28, 2, 29, 30, 14, 31, 32, 1, 5, 17, 33, 34, 26 | wlkp1lem2 26571 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐻) = (𝑁 + 1)) |
| 36 | 35 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → (0..^(#‘𝐻)) = (0..^(𝑁 + 1))) |
| 37 | | wlkcl 26511 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈
ℕ0) |
| 38 | | eleq1 2689 |
. . . . . . . . . . 11
⊢
((#‘𝐹) = 𝑁 → ((#‘𝐹) ∈ ℕ0
↔ 𝑁 ∈
ℕ0)) |
| 39 | 38 | eqcoms 2630 |
. . . . . . . . . 10
⊢ (𝑁 = (#‘𝐹) → ((#‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈
ℕ0)) |
| 40 | | elnn0uz 11725 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈
(ℤ≥‘0)) |
| 41 | 40 | biimpi 206 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
(ℤ≥‘0)) |
| 42 | 39, 41 | syl6bi 243 |
. . . . . . . . 9
⊢ (𝑁 = (#‘𝐹) → ((#‘𝐹) ∈ ℕ0 → 𝑁 ∈
(ℤ≥‘0))) |
| 43 | 5, 42 | ax-mp 5 |
. . . . . . . 8
⊢
((#‘𝐹) ∈
ℕ0 → 𝑁 ∈
(ℤ≥‘0)) |
| 44 | 1, 37, 43 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 45 | | fzosplitsn 12576 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 46 | 44, 45 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 47 | 36, 46 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → (0..^(#‘𝐻)) = ((0..^𝑁) ∪ {𝑁})) |
| 48 | 34 | dmeqd 5326 |
. . . . . 6
⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| 49 | | dmun 5331 |
. . . . . 6
⊢ dom
(𝐼 ∪ {〈𝐵, 𝐸〉}) = (dom 𝐼 ∪ dom {〈𝐵, 𝐸〉}) |
| 50 | 48, 49 | syl6eq 2672 |
. . . . 5
⊢ (𝜑 → dom (iEdg‘𝑆) = (dom 𝐼 ∪ dom {〈𝐵, 𝐸〉})) |
| 51 | 27, 47, 50 | feq123d 6034 |
. . . 4
⊢ (𝜑 → (𝐻:(0..^(#‘𝐻))⟶dom (iEdg‘𝑆) ↔ (𝐹 ∪ {〈𝑁, 𝐵〉}):((0..^𝑁) ∪ {𝑁})⟶(dom 𝐼 ∪ dom {〈𝐵, 𝐸〉}))) |
| 52 | 25, 51 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐻:(0..^(#‘𝐻))⟶dom (iEdg‘𝑆)) |
| 53 | | iswrdb 13311 |
. . 3
⊢ (𝐻 ∈ Word dom
(iEdg‘𝑆) ↔ 𝐻:(0..^(#‘𝐻))⟶dom (iEdg‘𝑆)) |
| 54 | 52, 53 | sylibr 224 |
. 2
⊢ (𝜑 → 𝐻 ∈ Word dom (iEdg‘𝑆)) |
| 55 | 28 | wlkp 26512 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 56 | 1, 55 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 57 | 5 | oveq2i 6661 |
. . . . . . 7
⊢
(0...𝑁) =
(0...(#‘𝐹)) |
| 58 | 57 | feq2i 6037 |
. . . . . 6
⊢ (𝑃:(0...𝑁)⟶𝑉 ↔ 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 59 | 56, 58 | sylibr 224 |
. . . . 5
⊢ (𝜑 → 𝑃:(0...𝑁)⟶𝑉) |
| 60 | | ovexd 6680 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ V) |
| 61 | 60, 31 | fsnd 6179 |
. . . . 5
⊢ (𝜑 → {〈(𝑁 + 1), 𝐶〉}:{(𝑁 + 1)}⟶𝑉) |
| 62 | | fzp1disj 12399 |
. . . . . 6
⊢
((0...𝑁) ∩
{(𝑁 + 1)}) =
∅ |
| 63 | 62 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅) |
| 64 | | fun 6066 |
. . . . 5
⊢ (((𝑃:(0...𝑁)⟶𝑉 ∧ {〈(𝑁 + 1), 𝐶〉}:{(𝑁 + 1)}⟶𝑉) ∧ ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}):((0...𝑁) ∪ {(𝑁 + 1)})⟶(𝑉 ∪ 𝑉)) |
| 65 | 59, 61, 63, 64 | syl21anc 1325 |
. . . 4
⊢ (𝜑 → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}):((0...𝑁) ∪ {(𝑁 + 1)})⟶(𝑉 ∪ 𝑉)) |
| 66 | | fzsuc 12388 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)})) |
| 67 | 44, 66 | syl 17 |
. . . . 5
⊢ (𝜑 → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)})) |
| 68 | | unidm 3756 |
. . . . . . 7
⊢ (𝑉 ∪ 𝑉) = 𝑉 |
| 69 | 68 | eqcomi 2631 |
. . . . . 6
⊢ 𝑉 = (𝑉 ∪ 𝑉) |
| 70 | 69 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑉 = (𝑉 ∪ 𝑉)) |
| 71 | 67, 70 | feq23d 6040 |
. . . 4
⊢ (𝜑 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}):(0...(𝑁 + 1))⟶𝑉 ↔ (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}):((0...𝑁) ∪ {(𝑁 + 1)})⟶(𝑉 ∪ 𝑉))) |
| 72 | 65, 71 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}):(0...(𝑁 + 1))⟶𝑉) |
| 73 | | wlkp1.q |
. . . . 5
⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
| 74 | 73 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})) |
| 75 | 35 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → (0...(#‘𝐻)) = (0...(𝑁 + 1))) |
| 76 | | wlkp1.s |
. . . 4
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 77 | 74, 75, 76 | feq123d 6034 |
. . 3
⊢ (𝜑 → (𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}):(0...(𝑁 + 1))⟶𝑉)) |
| 78 | 72, 77 | mpbird 247 |
. 2
⊢ (𝜑 → 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆)) |
| 79 | | wlkp1.l |
. . 3
⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) |
| 80 | 28, 2, 29, 30, 14, 31, 32, 1, 5, 17, 33, 34, 26, 73, 76, 79 | wlkp1lem8 26577 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))) |
| 81 | 28, 2, 29, 30, 14, 31, 32, 1, 5, 17, 33, 34, 26, 73, 76 | wlkp1lem4 26573 |
. . 3
⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
| 82 | | eqid 2622 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 83 | | eqid 2622 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 84 | 82, 83 | iswlk 26506 |
. . 3
⊢ ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))))) |
| 85 | 81, 84 | syl 17 |
. 2
⊢ (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))))) |
| 86 | 54, 78, 80, 85 | mpbir3and 1245 |
1
⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |