MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxds Structured version   Visualization version   GIF version

Theorem rrxds 23181
Description: The distance over generalized Euclidean spaces. Compare with df-rrn 33625. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxds (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxds
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
21rrxval 23175 . . 3 (𝐼𝑉𝐻 = (toℂHil‘(ℝfld freeLMod 𝐼)))
32fveq2d 6195 . 2 (𝐼𝑉 → (dist‘𝐻) = (dist‘(toℂHil‘(ℝfld freeLMod 𝐼))))
4 recrng 19967 . . . . 5 fld ∈ *-Ring
5 srngring 18852 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
64, 5ax-mp 5 . . . 4 fld ∈ Ring
7 eqid 2622 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
87frlmlmod 20093 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
96, 8mpan 706 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
10 lmodgrp 18870 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
11 eqid 2622 . . . 4 (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘(ℝfld freeLMod 𝐼))
12 eqid 2622 . . . 4 (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂHil‘(ℝfld freeLMod 𝐼)))
13 eqid 2622 . . . 4 (-g‘(ℝfld freeLMod 𝐼)) = (-g‘(ℝfld freeLMod 𝐼))
1411, 12, 13tchds 23030 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂHil‘(ℝfld freeLMod 𝐼))))
159, 10, 143syl 18 . 2 (𝐼𝑉 → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2622 . . . . . . . 8 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
1716, 13grpsubf 17494 . . . . . . 7 ((ℝfld freeLMod 𝐼) ∈ Grp → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
189, 10, 173syl 18 . . . . . 6 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
19 rrxbase.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
201, 19rrxbase 23176 . . . . . . . . 9 (𝐼𝑉𝐵 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0})
21 rebase 19952 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
22 re0g 19958 . . . . . . . . . . 11 0 = (0g‘ℝfld)
23 eqid 2622 . . . . . . . . . . 11 { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
247, 21, 22, 23frlmbas 20099 . . . . . . . . . 10 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
256, 24mpan 706 . . . . . . . . 9 (𝐼𝑉 → { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
2620, 25eqtrd 2656 . . . . . . . 8 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2726sqxpeqd 5141 . . . . . . 7 (𝐼𝑉 → (𝐵 × 𝐵) = ((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼))))
2827, 26feq23d 6040 . . . . . 6 (𝐼𝑉 → ((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 ↔ (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼))))
2918, 28mpbird 247 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵)
3029fovrnda 6805 . . . 4 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) ∈ 𝐵)
31 ffn 6045 . . . . . 6 ((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 → (-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵))
3229, 31syl 17 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵))
33 fnov 6768 . . . . 5 ((-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵) ↔ (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
3432, 33sylib 208 . . . 4 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
351, 19rrxnm 23179 . . . . 5 (𝐼𝑉 → (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))) = (norm‘𝐻))
362fveq2d 6195 . . . . 5 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))))
3735, 36eqtr2d 2657 . . . 4 (𝐼𝑉 → (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) = (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))))
38 fveq1 6190 . . . . . . . 8 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥) = ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥))
3938oveq1d 6665 . . . . . . 7 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → ((𝑥)↑2) = (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))
4039mpteq2dv 4745 . . . . . 6 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥𝐼 ↦ ((𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))
4140oveq2d 6666 . . . . 5 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))
4241fveq2d 6195 . . . 4 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))))
4330, 34, 37, 42fmpt2co 7260 . . 3 (𝐼𝑉 → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))))
44 simp1 1061 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝐼𝑉)
45 simprl 794 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
4626adantr 481 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
4745, 46eleqtrd 2703 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
48473impb 1260 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
497, 21, 16frlmbasmap 20103 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
5044, 48, 49syl2anc 693 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
51 elmapi 7879 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → 𝑓:𝐼⟶ℝ)
5250, 51syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
53 ffn 6045 . . . . . . . . . . . 12 (𝑓:𝐼⟶ℝ → 𝑓 Fn 𝐼)
5452, 53syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 Fn 𝐼)
55 simprr 796 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5655, 46eleqtrd 2703 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
57563impb 1260 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
587, 21, 16frlmbasmap 20103 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
5944, 57, 58syl2anc 693 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
60 elmapi 7879 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑𝑚 𝐼) → 𝑔:𝐼⟶ℝ)
6159, 60syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
62 ffn 6045 . . . . . . . . . . . 12 (𝑔:𝐼⟶ℝ → 𝑔 Fn 𝐼)
6361, 62syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 Fn 𝐼)
64 inidm 3822 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
65 eqidd 2623 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
66 eqidd 2623 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
6754, 63, 44, 44, 64, 65, 66offval 6904 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓𝑓 (-g‘ℝfld)𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
686a1i 11 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → ℝfld ∈ Ring)
69 simpl 473 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑉)
70 eqid 2622 . . . . . . . . . . . 12 (-g‘ℝfld) = (-g‘ℝfld)
717, 16, 68, 69, 47, 56, 70, 13frlmsubgval 20108 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓𝑓 (-g‘ℝfld)𝑔))
72713impb 1260 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓𝑓 (-g‘ℝfld)𝑔))
7352ffvelrnda 6359 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
7461ffvelrnda 6359 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
7570resubgval 19955 . . . . . . . . . . . 12 (((𝑓𝑥) ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7673, 74, 75syl2anc 693 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7776mpteq2dva 4744 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
7867, 72, 773eqtr4d 2666 . . . . . . . . 9 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))))
7973, 74resubcld 10458 . . . . . . . . 9 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
8078, 79fvmpt2d 6293 . . . . . . . 8 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥) = ((𝑓𝑥) − (𝑔𝑥)))
8180oveq1d 6665 . . . . . . 7 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2) = (((𝑓𝑥) − (𝑔𝑥))↑2))
8281mpteq2dva 4744 . . . . . 6 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
8382oveq2d 6666 . . . . 5 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))
8483fveq2d 6195 . . . 4 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))
8584mpt2eq3dva 6719 . . 3 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
8643, 85eqtrd 2656 . 2 (𝐼𝑉 → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
873, 15, 863eqtr2rd 2663 1 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916   class class class wbr 4653  cmpt 4729   × cxp 5112  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  𝑚 cmap 7857   finSupp cfsupp 8275  cr 9935  0cc0 9936  cmin 10266  2c2 11070  cexp 12860  csqrt 13973  Basecbs 15857  distcds 15950   Σg cgsu 16101  Grpcgrp 17422  -gcsg 17424  Ringcrg 18547  *-Ringcsr 18844  LModclmod 18863  fldcrefld 19950   freeLMod cfrlm 20090  normcnm 22381  toℂHilctch 22967  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-nm 22387  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  rrxmval  23188  rrxmfval  23189  rrxtopn  40501  rrxdsfi  40505
  Copyright terms: Public domain W3C validator