| Step | Hyp | Ref
| Expression |
| 1 | | 1on 7567 |
. . . . . . 7
⊢
1𝑜 ∈ On |
| 2 | 1 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1𝑜
∈ On) |
| 3 | | evls1sca.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ CRing) |
| 4 | | evls1sca.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| 5 | | eqid 2622 |
. . . . . . 7
⊢
((1𝑜 evalSub 𝑆)‘𝑅) = ((1𝑜 evalSub 𝑆)‘𝑅) |
| 6 | | eqid 2622 |
. . . . . . 7
⊢
(1𝑜 mPoly 𝑈) = (1𝑜 mPoly 𝑈) |
| 7 | | evls1sca.u |
. . . . . . 7
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| 8 | | eqid 2622 |
. . . . . . 7
⊢ (𝑆 ↑s
(𝐵
↑𝑚 1𝑜)) = (𝑆 ↑s (𝐵 ↑𝑚
1𝑜)) |
| 9 | | evls1sca.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
| 10 | 5, 6, 7, 8, 9 | evlsrhm 19521 |
. . . . . 6
⊢
((1𝑜 ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub
𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚
1𝑜)))) |
| 11 | 2, 3, 4, 10 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → ((1𝑜
evalSub 𝑆)‘𝑅) ∈ ((1𝑜
mPoly 𝑈) RingHom (𝑆 ↑s
(𝐵
↑𝑚 1𝑜)))) |
| 12 | | eqid 2622 |
. . . . . 6
⊢
(Base‘(1𝑜 mPoly 𝑈)) = (Base‘(1𝑜
mPoly 𝑈)) |
| 13 | | eqid 2622 |
. . . . . 6
⊢
(Base‘(𝑆
↑s (𝐵 ↑𝑚
1𝑜))) = (Base‘(𝑆 ↑s (𝐵 ↑𝑚
1𝑜))) |
| 14 | 12, 13 | rhmf 18726 |
. . . . 5
⊢
(((1𝑜 evalSub 𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚
1𝑜))) → ((1𝑜 evalSub 𝑆)‘𝑅):(Base‘(1𝑜 mPoly
𝑈))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
1𝑜)))) |
| 15 | 11, 14 | syl 17 |
. . . 4
⊢ (𝜑 → ((1𝑜
evalSub 𝑆)‘𝑅):(Base‘(1𝑜 mPoly
𝑈))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
1𝑜)))) |
| 16 | | evls1sca.a |
. . . . . . 7
⊢ 𝐴 = (algSc‘𝑊) |
| 17 | | eqid 2622 |
. . . . . . 7
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 18 | 7 | subrgring 18783 |
. . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 19 | 4, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ Ring) |
| 20 | | evls1sca.w |
. . . . . . . . 9
⊢ 𝑊 = (Poly1‘𝑈) |
| 21 | 20 | ply1ring 19618 |
. . . . . . . 8
⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
| 22 | 19, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Ring) |
| 23 | 20 | ply1lmod 19622 |
. . . . . . . 8
⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) |
| 24 | 19, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 25 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 26 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 27 | 16, 17, 22, 24, 25, 26 | asclf 19337 |
. . . . . 6
⊢ (𝜑 → 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊)) |
| 28 | 9 | subrgss 18781 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 29 | 4, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ 𝐵) |
| 30 | 7, 9 | ressbas2 15931 |
. . . . . . . . 9
⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘𝑈)) |
| 31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
| 32 | 20 | ply1sca 19623 |
. . . . . . . . . 10
⊢ (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊)) |
| 33 | 19, 32 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 = (Scalar‘𝑊)) |
| 34 | 33 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑈) =
(Base‘(Scalar‘𝑊))) |
| 35 | 31, 34 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (Base‘(Scalar‘𝑊))) |
| 36 | | eqid 2622 |
. . . . . . . . . 10
⊢
(PwSer1‘𝑈) = (PwSer1‘𝑈) |
| 37 | 20, 36, 26 | ply1bas 19565 |
. . . . . . . . 9
⊢
(Base‘𝑊) =
(Base‘(1𝑜 mPoly 𝑈)) |
| 38 | 37 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑊) =
(Base‘(1𝑜 mPoly 𝑈))) |
| 39 | 38 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(1𝑜 mPoly 𝑈)) = (Base‘𝑊)) |
| 40 | 35, 39 | feq23d 6040 |
. . . . . 6
⊢ (𝜑 → (𝐴:𝑅⟶(Base‘(1𝑜
mPoly 𝑈)) ↔ 𝐴:(Base‘(Scalar‘𝑊))⟶(Base‘𝑊))) |
| 41 | 27, 40 | mpbird 247 |
. . . . 5
⊢ (𝜑 → 𝐴:𝑅⟶(Base‘(1𝑜
mPoly 𝑈))) |
| 42 | | evls1sca.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑅) |
| 43 | 41, 42 | ffvelrnd 6360 |
. . . 4
⊢ (𝜑 → (𝐴‘𝑋) ∈ (Base‘(1𝑜
mPoly 𝑈))) |
| 44 | | fvco3 6275 |
. . . 4
⊢
((((1𝑜 evalSub 𝑆)‘𝑅):(Base‘(1𝑜 mPoly
𝑈))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚
1𝑜))) ∧ (𝐴‘𝑋) ∈ (Base‘(1𝑜
mPoly 𝑈))) → (((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) ∘
((1𝑜 evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋)) = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))))‘(((1𝑜 evalSub
𝑆)‘𝑅)‘(𝐴‘𝑋)))) |
| 45 | 15, 43, 44 | syl2anc 693 |
. . 3
⊢ (𝜑 → (((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) ∘
((1𝑜 evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋)) = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))))‘(((1𝑜 evalSub
𝑆)‘𝑅)‘(𝐴‘𝑋)))) |
| 46 | 16 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 = (algSc‘𝑊)) |
| 47 | | eqid 2622 |
. . . . . . . . 9
⊢
(algSc‘𝑊) =
(algSc‘𝑊) |
| 48 | 20, 47 | ply1ascl 19628 |
. . . . . . . 8
⊢
(algSc‘𝑊) =
(algSc‘(1𝑜 mPoly 𝑈)) |
| 49 | 46, 48 | syl6eq 2672 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (algSc‘(1𝑜 mPoly
𝑈))) |
| 50 | 49 | fveq1d 6193 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝑋) = ((algSc‘(1𝑜
mPoly 𝑈))‘𝑋)) |
| 51 | 50 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 → (((1𝑜
evalSub 𝑆)‘𝑅)‘(𝐴‘𝑋)) = (((1𝑜 evalSub 𝑆)‘𝑅)‘((algSc‘(1𝑜
mPoly 𝑈))‘𝑋))) |
| 52 | | eqid 2622 |
. . . . . 6
⊢
(algSc‘(1𝑜 mPoly 𝑈)) = (algSc‘(1𝑜
mPoly 𝑈)) |
| 53 | 5, 6, 7, 9, 52, 2,
3, 4, 42 | evlssca 19522 |
. . . . 5
⊢ (𝜑 → (((1𝑜
evalSub 𝑆)‘𝑅)‘((algSc‘(1𝑜
mPoly 𝑈))‘𝑋)) = ((𝐵 ↑𝑚
1𝑜) × {𝑋})) |
| 54 | 51, 53 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (((1𝑜
evalSub 𝑆)‘𝑅)‘(𝐴‘𝑋)) = ((𝐵 ↑𝑚
1𝑜) × {𝑋})) |
| 55 | 54 | fveq2d 6195 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))))‘(((1𝑜 evalSub
𝑆)‘𝑅)‘(𝐴‘𝑋))) = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))))‘((𝐵 ↑𝑚
1𝑜) × {𝑋}))) |
| 56 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))))) |
| 57 | | coeq1 5279 |
. . . . . 6
⊢ (𝑥 = ((𝐵 ↑𝑚
1𝑜) × {𝑋}) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))) = (((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) |
| 58 | 57 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = ((𝐵 ↑𝑚
1𝑜) × {𝑋})) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))) = (((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) |
| 59 | 29, 42 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 60 | | fconst6g 6094 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → ((𝐵 ↑𝑚
1𝑜) × {𝑋}):(𝐵 ↑𝑚
1𝑜)⟶𝐵) |
| 61 | 59, 60 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐵 ↑𝑚
1𝑜) × {𝑋}):(𝐵 ↑𝑚
1𝑜)⟶𝐵) |
| 62 | | fvex 6201 |
. . . . . . . . 9
⊢
(Base‘𝑆)
∈ V |
| 63 | 9, 62 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 64 | 63 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
| 65 | | ovex 6678 |
. . . . . . . 8
⊢ (𝐵 ↑𝑚
1𝑜) ∈ V |
| 66 | 65 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ↑𝑚
1𝑜) ∈ V) |
| 67 | 64, 66 | elmapd 7871 |
. . . . . 6
⊢ (𝜑 → (((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↔ ((𝐵 ↑𝑚
1𝑜) × {𝑋}):(𝐵 ↑𝑚
1𝑜)⟶𝐵)) |
| 68 | 61, 67 | mpbird 247 |
. . . . 5
⊢ (𝜑 → ((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜))) |
| 69 | | snex 4908 |
. . . . . . . 8
⊢ {𝑋} ∈ V |
| 70 | 65, 69 | xpex 6962 |
. . . . . . 7
⊢ ((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∈ V |
| 71 | 70 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∈ V) |
| 72 | | mptexg 6484 |
. . . . . . 7
⊢ (𝐵 ∈ V → (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})) ∈
V) |
| 73 | 64, 72 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})) ∈
V) |
| 74 | | coexg 7117 |
. . . . . 6
⊢ ((((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∈ V ∧ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})) ∈ V) →
(((𝐵
↑𝑚 1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))) ∈
V) |
| 75 | 71, 73, 74 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))) ∈
V) |
| 76 | 56, 58, 68, 75 | fvmptd 6288 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))))‘((𝐵 ↑𝑚
1𝑜) × {𝑋})) = (((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) |
| 77 | | fconst6g 6094 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → (1𝑜 ×
{𝑦}):1𝑜⟶𝐵) |
| 78 | 77 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1𝑜 ×
{𝑦}):1𝑜⟶𝐵) |
| 79 | 63, 1 | pm3.2i 471 |
. . . . . . . 8
⊢ (𝐵 ∈ V ∧
1𝑜 ∈ On) |
| 80 | 79 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐵 ∈ V ∧ 1𝑜 ∈
On)) |
| 81 | | elmapg 7870 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧
1𝑜 ∈ On) → ((1𝑜 × {𝑦}) ∈ (𝐵 ↑𝑚
1𝑜) ↔ (1𝑜 × {𝑦}):1𝑜⟶𝐵)) |
| 82 | 80, 81 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1𝑜 ×
{𝑦}) ∈ (𝐵 ↑𝑚
1𝑜) ↔ (1𝑜 × {𝑦}):1𝑜⟶𝐵)) |
| 83 | 78, 82 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1𝑜 ×
{𝑦}) ∈ (𝐵 ↑𝑚
1𝑜)) |
| 84 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})) = (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))) |
| 85 | | fconstmpt 5163 |
. . . . . 6
⊢ ((𝐵 ↑𝑚
1𝑜) × {𝑋}) = (𝑧 ∈ (𝐵 ↑𝑚
1𝑜) ↦ 𝑋) |
| 86 | 85 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐵 ↑𝑚
1𝑜) × {𝑋}) = (𝑧 ∈ (𝐵 ↑𝑚
1𝑜) ↦ 𝑋)) |
| 87 | | eqidd 2623 |
. . . . 5
⊢ (𝑧 = (1𝑜
× {𝑦}) → 𝑋 = 𝑋) |
| 88 | 83, 84, 86, 87 | fmptco 6396 |
. . . 4
⊢ (𝜑 → (((𝐵 ↑𝑚
1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
| 89 | 76, 88 | eqtrd 2656 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦}))))‘((𝐵 ↑𝑚
1𝑜) × {𝑋})) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
| 90 | 45, 55, 89 | 3eqtrd 2660 |
. 2
⊢ (𝜑 → (((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) ∘
((1𝑜 evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋)) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
| 91 | | elpwg 4166 |
. . . . . 6
⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
| 92 | 28, 91 | mpbird 247 |
. . . . 5
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ∈ 𝒫 𝐵) |
| 93 | 4, 92 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝒫 𝐵) |
| 94 | | evls1sca.q |
. . . . 5
⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| 95 | | eqid 2622 |
. . . . 5
⊢
(1𝑜 evalSub 𝑆) = (1𝑜 evalSub 𝑆) |
| 96 | 94, 95, 9 | evls1fval 19684 |
. . . 4
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) ∘
((1𝑜 evalSub 𝑆)‘𝑅))) |
| 97 | 3, 93, 96 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑄 = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) ∘
((1𝑜 evalSub 𝑆)‘𝑅))) |
| 98 | 97 | fveq1d 6193 |
. 2
⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚
1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 ×
{𝑦})))) ∘
((1𝑜 evalSub 𝑆)‘𝑅))‘(𝐴‘𝑋))) |
| 99 | | fconstmpt 5163 |
. . 3
⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) |
| 100 | 99 | a1i 11 |
. 2
⊢ (𝜑 → (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
| 101 | 90, 98, 100 | 3eqtr4d 2666 |
1
⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |