MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem9 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem9 16788
Description: Lemma 9 for funcestrcsetc 16789. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcestrcsetclem9
StepHypRef Expression
1 funcestrcsetc.e . . . . . 6 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
4 eqid 2622 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 2estrcbas 16765 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐸))
6 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
75, 6syl6reqr 2675 . . . . . . . . . 10 (𝜑𝐵 = 𝑈)
87eleq2d 2687 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
98biimpcd 239 . . . . . . . 8 (𝑋𝐵 → (𝜑𝑋𝑈))
1093ad2ant1 1082 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑋𝑈))
1110impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝑈)
127eleq2d 2687 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
1312biimpcd 239 . . . . . . . 8 (𝑌𝐵 → (𝜑𝑌𝑈))
14133ad2ant2 1083 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑌𝑈))
1514impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝑈)
16 eqid 2622 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
17 eqid 2622 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
181, 3, 4, 11, 15, 16, 17estrchom 16767 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
1918eleq2d 2687 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ↔ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))))
207eleq2d 2687 . . . . . . . . 9 (𝜑 → (𝑍𝐵𝑍𝑈))
2120biimpcd 239 . . . . . . . 8 (𝑍𝐵 → (𝜑𝑍𝑈))
22213ad2ant3 1084 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑍𝑈))
2322impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝑈)
24 eqid 2622 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
251, 3, 4, 15, 23, 17, 24estrchom 16767 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝐸)𝑍) = ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))
2625eleq2d 2687 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍) ↔ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))))
2719, 26anbi12d 747 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) ↔ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))))
28 elmapi 7879 . . . . . . . . . 10 (𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
29 elmapi 7879 . . . . . . . . . 10 (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
30 fco 6058 . . . . . . . . . 10 ((𝐾:(Base‘𝑌)⟶(Base‘𝑍) ∧ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3128, 29, 30syl2an 494 . . . . . . . . 9 ((𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
32 fvex 6201 . . . . . . . . . 10 (Base‘𝑍) ∈ V
33 fvex 6201 . . . . . . . . . 10 (Base‘𝑋) ∈ V
3432, 33elmap 7886 . . . . . . . . 9 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)) ↔ (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3531, 34sylibr 224 . . . . . . . 8 ((𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))
3635ancoms 469 . . . . . . 7 ((𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))
3736adantl 482 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))
38 fvresi 6439 . . . . . 6 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)) → (( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
3937, 38syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
40 funcestrcsetc.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
41 funcestrcsetc.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
42 funcestrcsetc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
43 funcestrcsetc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
441, 40, 6, 41, 2, 42, 43, 16, 24funcestrcsetclem5 16784 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋))))
45443adantr2 1221 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋))))
4645adantr 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋))))
473adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑈 ∈ WUni)
48 eqid 2622 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
4911adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑋𝑈)
5015adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑌𝑈)
5123adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑍𝑈)
5229ad2antrl 764 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
5328ad2antll 765 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
541, 47, 48, 49, 50, 51, 16, 17, 24, 52, 53estrcco 16770 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻) = (𝐾𝐻))
5546, 54fveq12d 6197 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))‘(𝐾𝐻)))
56 eqid 2622 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
571, 40, 6, 41, 2, 42funcestrcsetclem2 16781 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
58573ad2antr1 1226 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
5958adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐹𝑋) ∈ 𝑈)
601, 40, 6, 41, 2, 42funcestrcsetclem2 16781 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
61603ad2antr2 1227 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
6261adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐹𝑌) ∈ 𝑈)
631, 40, 6, 41, 2, 42funcestrcsetclem2 16781 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
64633ad2antr3 1228 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
6564adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐹𝑍) ∈ 𝑈)
661, 40, 6, 41, 2, 42funcestrcsetclem1 16780 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
67663ad2antr1 1226 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
681, 40, 6, 41, 2, 42funcestrcsetclem1 16780 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
69683ad2antr2 1227 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
7067, 69feq23d 6040 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7170adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7252, 71mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
73 simpll 790 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝜑)
74 3simpa 1058 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
7574ad2antlr 763 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝑋𝐵𝑌𝐵))
76 simprl 794 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
771, 40, 6, 41, 2, 42, 43, 16, 17funcestrcsetclem6 16785 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7873, 75, 76, 77syl3anc 1326 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7978feq1d 6030 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
8072, 79mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
811, 40, 6, 41, 2, 42funcestrcsetclem1 16780 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
82813ad2antr3 1228 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
8369, 82feq23d 6040 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8483adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8553, 84mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
86 3simpc 1060 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
8786ad2antlr 763 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝑌𝐵𝑍𝐵))
88 simprr 796 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))
891, 40, 6, 41, 2, 42, 43, 17, 24funcestrcsetclem6 16785 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9073, 87, 88, 89syl3anc 1326 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9190feq1d 6030 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
9285, 91mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
9340, 47, 56, 59, 62, 65, 80, 92setcco 16733 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
9490, 78coeq12d 5286 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9593, 94eqtrd 2656 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9639, 55, 953eqtr4d 2666 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
9796ex 450 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
9827, 97sylbid 230 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
99983impia 1261 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cop 4183  cmpt 4729   I cid 5023  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  WUnicwun 9522  Basecbs 15857  Hom chom 15952  compcco 15953  SetCatcsetc 16725  ExtStrCatcestrc 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wun 9524  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-setc 16726  df-estrc 16763
This theorem is referenced by:  funcestrcsetc  16789
  Copyright terms: Public domain W3C validator