Proof of Theorem funcestrcsetclem9
| Step | Hyp | Ref
| Expression |
| 1 | | funcestrcsetc.e |
. . . . . 6
⊢ 𝐸 = (ExtStrCat‘𝑈) |
| 2 | | funcestrcsetc.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ WUni) |
| 3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑈 ∈ WUni) |
| 4 | | eqid 2622 |
. . . . . 6
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 5 | 1, 2 | estrcbas 16765 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
| 6 | | funcestrcsetc.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐸) |
| 7 | 5, 6 | syl6reqr 2675 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = 𝑈) |
| 8 | 7 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈)) |
| 9 | 8 | biimpcd 239 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (𝜑 → 𝑋 ∈ 𝑈)) |
| 10 | 9 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑋 ∈ 𝑈)) |
| 11 | 10 | impcom 446 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝑈) |
| 12 | 7 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ 𝑈)) |
| 13 | 12 | biimpcd 239 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐵 → (𝜑 → 𝑌 ∈ 𝑈)) |
| 14 | 13 | 3ad2ant2 1083 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑌 ∈ 𝑈)) |
| 15 | 14 | impcom 446 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝑈) |
| 16 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
| 17 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 18 | 1, 3, 4, 11, 15, 16, 17 | estrchom 16767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑𝑚
(Base‘𝑋))) |
| 19 | 18 | eleq2d 2687 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ↔ 𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)))) |
| 20 | 7 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 ∈ 𝐵 ↔ 𝑍 ∈ 𝑈)) |
| 21 | 20 | biimpcd 239 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝐵 → (𝜑 → 𝑍 ∈ 𝑈)) |
| 22 | 21 | 3ad2ant3 1084 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝜑 → 𝑍 ∈ 𝑈)) |
| 23 | 22 | impcom 446 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝑈) |
| 24 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑍) =
(Base‘𝑍) |
| 25 | 1, 3, 4, 15, 23, 17, 24 | estrchom 16767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌(Hom ‘𝐸)𝑍) = ((Base‘𝑍) ↑𝑚
(Base‘𝑌))) |
| 26 | 25 | eleq2d 2687 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍) ↔ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) |
| 27 | 19, 26 | anbi12d 747 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) ↔ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌))))) |
| 28 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)) →
𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
| 29 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) →
𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
| 30 | | fco 6058 |
. . . . . . . . . 10
⊢ ((𝐾:(Base‘𝑌)⟶(Base‘𝑍) ∧ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) → (𝐾 ∘ 𝐻):(Base‘𝑋)⟶(Base‘𝑍)) |
| 31 | 28, 29, 30 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋))) →
(𝐾 ∘ 𝐻):(Base‘𝑋)⟶(Base‘𝑍)) |
| 32 | | fvex 6201 |
. . . . . . . . . 10
⊢
(Base‘𝑍)
∈ V |
| 33 | | fvex 6201 |
. . . . . . . . . 10
⊢
(Base‘𝑋)
∈ V |
| 34 | 32, 33 | elmap 7886 |
. . . . . . . . 9
⊢ ((𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑋)) ↔
(𝐾 ∘ 𝐻):(Base‘𝑋)⟶(Base‘𝑍)) |
| 35 | 31, 34 | sylibr 224 |
. . . . . . . 8
⊢ ((𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋))) →
(𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑋))) |
| 36 | 35 | ancoms 469 |
. . . . . . 7
⊢ ((𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌))) →
(𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑋))) |
| 37 | 36 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑋))) |
| 38 | | fvresi 6439 |
. . . . . 6
⊢ ((𝐾 ∘ 𝐻) ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑋)) → (( I
↾ ((Base‘𝑍)
↑𝑚 (Base‘𝑋)))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
| 39 | 37, 38 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) → ((
I ↾ ((Base‘𝑍)
↑𝑚 (Base‘𝑋)))‘(𝐾 ∘ 𝐻)) = (𝐾 ∘ 𝐻)) |
| 40 | | funcestrcsetc.s |
. . . . . . . . 9
⊢ 𝑆 = (SetCat‘𝑈) |
| 41 | | funcestrcsetc.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝑆) |
| 42 | | funcestrcsetc.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| 43 | | funcestrcsetc.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚
(Base‘𝑥))))) |
| 44 | 1, 40, 6, 41, 2, 42, 43, 16, 24 | funcestrcsetclem5 16784 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚
(Base‘𝑋)))) |
| 45 | 44 | 3adantr2 1221 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚
(Base‘𝑋)))) |
| 46 | 45 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚
(Base‘𝑋)))) |
| 47 | 3 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝑈 ∈
WUni) |
| 48 | | eqid 2622 |
. . . . . . 7
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 49 | 11 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝑋 ∈ 𝑈) |
| 50 | 15 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝑌 ∈ 𝑈) |
| 51 | 23 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝑍 ∈ 𝑈) |
| 52 | 29 | ad2antrl 764 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝐻:(Base‘𝑋)⟶(Base‘𝑌)) |
| 53 | 28 | ad2antll 765 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝐾:(Base‘𝑌)⟶(Base‘𝑍)) |
| 54 | 1, 47, 48, 49, 50, 51, 16, 17, 24, 52, 53 | estrcco 16770 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻) = (𝐾 ∘ 𝐻)) |
| 55 | 46, 54 | fveq12d 6197 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (( I ↾ ((Base‘𝑍) ↑𝑚
(Base‘𝑋)))‘(𝐾 ∘ 𝐻))) |
| 56 | | eqid 2622 |
. . . . . . 7
⊢
(comp‘𝑆) =
(comp‘𝑆) |
| 57 | 1, 40, 6, 41, 2, 42 | funcestrcsetclem2 16781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) |
| 58 | 57 | 3ad2antr1 1226 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) ∈ 𝑈) |
| 59 | 58 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝐹‘𝑋) ∈ 𝑈) |
| 60 | 1, 40, 6, 41, 2, 42 | funcestrcsetclem2 16781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ 𝑈) |
| 61 | 60 | 3ad2antr2 1227 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) ∈ 𝑈) |
| 62 | 61 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝐹‘𝑌) ∈ 𝑈) |
| 63 | 1, 40, 6, 41, 2, 42 | funcestrcsetclem2 16781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) ∈ 𝑈) |
| 64 | 63 | 3ad2antr3 1228 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) ∈ 𝑈) |
| 65 | 64 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝐹‘𝑍) ∈ 𝑈) |
| 66 | 1, 40, 6, 41, 2, 42 | funcestrcsetclem1 16780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| 67 | 66 | 3ad2antr1 1226 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑋) = (Base‘𝑋)) |
| 68 | 1, 40, 6, 41, 2, 42 | funcestrcsetclem1 16780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) = (Base‘𝑌)) |
| 69 | 68 | 3ad2antr2 1227 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑌) = (Base‘𝑌)) |
| 70 | 67, 69 | feq23d 6040 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
| 71 | 70 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌))) |
| 72 | 52, 71 | mpbird 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
| 73 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝜑) |
| 74 | | 3simpa 1058 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 75 | 74 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 76 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋))) |
| 77 | 1, 40, 6, 41, 2, 42, 43, 16, 17 | funcestrcsetclem6 16785 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋))) →
((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
| 78 | 73, 75, 76, 77 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
| 79 | 78 | feq1d 6030 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌) ↔ 𝐻:(𝐹‘𝑋)⟶(𝐹‘𝑌))) |
| 80 | 72, 79 | mpbird 247 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
((𝑋𝐺𝑌)‘𝐻):(𝐹‘𝑋)⟶(𝐹‘𝑌)) |
| 81 | 1, 40, 6, 41, 2, 42 | funcestrcsetclem1 16780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) = (Base‘𝑍)) |
| 82 | 81 | 3ad2antr3 1228 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘𝑍) = (Base‘𝑍)) |
| 83 | 69, 82 | feq23d 6040 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
| 84 | 83 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍))) |
| 85 | 53, 84 | mpbird 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
| 86 | | 3simpc 1060 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
| 87 | 86 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
| 88 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌))) |
| 89 | 1, 40, 6, 41, 2, 42, 43, 17, 24 | funcestrcsetclem6 16785 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌))) →
((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
| 90 | 73, 87, 88, 89 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
((𝑌𝐺𝑍)‘𝐾) = 𝐾) |
| 91 | 90 | feq1d 6030 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍) ↔ 𝐾:(𝐹‘𝑌)⟶(𝐹‘𝑍))) |
| 92 | 85, 91 | mpbird 247 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
((𝑌𝐺𝑍)‘𝐾):(𝐹‘𝑌)⟶(𝐹‘𝑍)) |
| 93 | 40, 47, 56, 59, 62, 65, 80, 92 | setcco 16733 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻))) |
| 94 | 90, 78 | coeq12d 5286 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
| 95 | 93, 94 | eqtrd 2656 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
(((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾 ∘ 𝐻)) |
| 96 | 39, 55, 95 | 3eqtr4d 2666 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌)))) →
((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |
| 97 | 96 | ex 450 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ ((Base‘𝑌) ↑𝑚
(Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚
(Base‘𝑌))) →
((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
| 98 | 27, 97 | sylbid 230 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻)))) |
| 99 | 98 | 3impia 1261 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) |