![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flmulnn0 | Structured version Visualization version GIF version |
Description: Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
Ref | Expression |
---|---|
flmulnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reflcl 12597 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ) |
3 | simpr 477 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
4 | simpl 473 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℕ0) | |
5 | 4 | nn0red 11352 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℝ) |
6 | 4 | nn0ge0d 11354 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝑁) |
7 | flle 12600 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
8 | 7 | adantl 482 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴) |
9 | 2, 3, 5, 6, 8 | lemul2ad 10964 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴)) |
10 | 5, 3 | remulcld 10070 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ) |
11 | nn0z 11400 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
12 | flcl 12596 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
13 | zmulcl 11426 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ) | |
14 | 11, 12, 13 | syl2an 494 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ) |
15 | flge 12606 | . . 3 ⊢ (((𝑁 · 𝐴) ∈ ℝ ∧ (𝑁 · (⌊‘𝐴)) ∈ ℤ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))) | |
16 | 10, 14, 15 | syl2anc 693 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))) |
17 | 9, 16 | mpbid 222 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 · cmul 9941 ≤ cle 10075 ℕ0cn0 11292 ℤcz 11377 ⌊cfl 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fl 12593 |
This theorem is referenced by: modmulnn 12688 |
Copyright terms: Public domain | W3C validator |