MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2ad Structured version   Visualization version   GIF version

Theorem lemul2ad 10964
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
lemul1ad.4 (𝜑 → 0 ≤ 𝐶)
lemul1ad.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
lemul2ad (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))

Proof of Theorem lemul2ad
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 lemul1ad.4 . . 3 (𝜑 → 0 ≤ 𝐶)
53, 4jca 554 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
6 lemul1ad.5 . 2 (𝜑𝐴𝐵)
7 lemul2a 10878 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))
81, 2, 5, 6, 7syl31anc 1329 1 (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936   · cmul 9941  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  flmulnn0  12628  leexp2r  12918  fprodle  14727  efcllem  14808  2expltfac  15799  nlmvscnlem2  22489  ipcnlem2  23043  dveflem  23742  dvfsumlem2  23790  plyeq0lem  23966  radcnvlem1  24167  pserulm  24176  abelthlem7  24192  abscxpbnd  24494  lgamgulmlem3  24757  ftalem1  24799  ftalem5  24803  chpub  24945  vmadivsum  25171  dchrisum0lem1a  25175  dchrisumlem2  25179  dchrisum0re  25202  vmalogdivsum2  25227  2vmadivsumlem  25229  selbergb  25238  selberg2b  25241  chpdifbndlem1  25242  selberg3lem1  25246  selberg4lem1  25249  pntrlog2bndlem1  25266  pntrlog2bndlem2  25267  pntrlog2bndlem4  25269  pntrlog2bndlem5  25270  pntrlog2bndlem6  25272  ostth2lem2  25323  axpaschlem  25820  nexple  30071  hgt750lem  30729  hgt750lemb  30734  resconn  31228  knoppcnlem4  32486  unbdqndv2lem2  32501  knoppndvlem11  32513  knoppndvlem14  32516  knoppndvlem18  32520  knoppndvlem19  32521  iblmulc2nc  33475  sqrlearg  39780  fmul01  39812  fmul01lt1lem1  39816  sumnnodd  39862  ioodvbdlimc1lem2  40147  ioodvbdlimc2lem  40149  stoweidlem1  40218  wallispi  40287  wallispi2lem1  40288  wallispi2  40290  stirlinglem12  40302  fourierdlem30  40354  fourierdlem39  40363  fourierdlem47  40370  fourierdlem68  40391  fourierdlem73  40396  fourierdlem87  40410  fouriersw  40448  etransclem23  40474  hoidmvlelem1  40809  hoidmvlelem2  40810  hoidmvlelem4  40812
  Copyright terms: Public domain W3C validator