Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1lem Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1lem 41476
Description: Lemma for fmtnoprmfac1 41477: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac1lem ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem fmtnoprmfac1lem
StepHypRef Expression
1 nnnn0 11299 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 fmtno 41441 . . . . . . 7 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
43breq2d 4665 . . . . 5 (𝑁 ∈ ℕ → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
54adantr 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
6 eldifi 3732 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
7 prmnn 15388 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
86, 7syl 17 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
9 2nn 11185 . . . . . . . . 9 2 ∈ ℕ
109a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ)
11 2nn0 11309 . . . . . . . . . 10 2 ∈ ℕ0
1211a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1312, 1nn0expcld 13031 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
1410, 13nnexpcld 13030 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
1514peano2nnd 11037 . . . . . 6 (𝑁 ∈ ℕ → ((2↑(2↑𝑁)) + 1) ∈ ℕ)
1615nnzd 11481 . . . . 5 (𝑁 ∈ ℕ → ((2↑(2↑𝑁)) + 1) ∈ ℤ)
17 dvdsval3 14987 . . . . 5 ((𝑃 ∈ ℕ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ) → (𝑃 ∥ ((2↑(2↑𝑁)) + 1) ↔ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
188, 16, 17syl2anr 495 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑𝑁)) + 1) ↔ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
195, 18bitrd 268 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) ↔ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
2019biimp3a 1432 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
2114nnzd 11481 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
2221adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(2↑𝑁)) ∈ ℤ)
23 1zzd 11408 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℤ)
248adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
25 summodnegmod 15012 . . . . . 6 (((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
2622, 23, 24, 25syl3anc 1326 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
27 neg1z 11413 . . . . . . . . . 10 -1 ∈ ℤ
2822, 27jctir 561 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
2928adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
307nnrpd 11870 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
316, 30syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
3212, 31anim12i 590 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
3332adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
34 simpr 477 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃))
35 modexp 12999 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ (2 ∈ ℕ0𝑃 ∈ ℝ+) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3629, 33, 34, 35syl3anc 1326 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3736ex 450 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃)))
38 2cnd 11093 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3938, 13, 123jca 1242 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
4039adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
41 expmul 12905 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
4240, 41syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
43 2cnd 11093 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℂ)
441adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℕ0)
4543, 44expp1d 13009 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
4645eqcomd 2628 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
4746oveq2d 6666 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
4842, 47eqtr3d 2658 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁))↑2) = (2↑(2↑(𝑁 + 1))))
4948oveq1d 6665 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((2↑(2↑(𝑁 + 1))) mod 𝑃))
50 neg1sqe1 12959 . . . . . . . . . . 11 (-1↑2) = 1
5150a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1↑2) = 1)
5251oveq1d 6665 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = (1 mod 𝑃))
538nnred 11035 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
54 prmgt1 15409 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 1 < 𝑃)
556, 54syl 17 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃)
56 1mod 12702 . . . . . . . . . . 11 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
5753, 55, 56syl2anc 693 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
5857adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (1 mod 𝑃) = 1)
5952, 58eqtrd 2656 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = 1)
6049, 59eqeq12d 2637 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) ↔ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1))
61 simpll 790 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → (𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})))
6221adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(2↑𝑁)) ∈ ℤ)
63 1zzd 11408 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℤ)
647adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
6562, 63, 643jca 1242 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
666, 65sylan2 491 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6766adantr 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6867, 25syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
69 m1modnnsub1 12716 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → (-1 mod 𝑃) = (𝑃 − 1))
7024, 69syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) = (𝑃 − 1))
71 eldifsni 4320 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
7271adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ≠ 2)
7372necomd 2849 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ≠ 𝑃)
748nncnd 11036 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
7574adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
76 1cnd 10056 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
7775, 76, 76subadd2d 10411 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ (1 + 1) = 𝑃))
78 1p1e2 11134 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
7978eqeq1i 2627 . . . . . . . . . . . . . . . . . . . 20 ((1 + 1) = 𝑃 ↔ 2 = 𝑃)
8077, 79syl6bb 276 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ 2 = 𝑃))
8180necon3bid 2838 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) ≠ 1 ↔ 2 ≠ 𝑃))
8273, 81mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 − 1) ≠ 1)
8370, 82eqnetrd 2861 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) ≠ 1)
8483adantr 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (-1 mod 𝑃) ≠ 1)
8584adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (-1 mod 𝑃) ≠ 1)
86 eqeq1 2626 . . . . . . . . . . . . . . . 16 (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8786adantl 482 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8887necon3bid 2838 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ (-1 mod 𝑃) ≠ 1))
8985, 88mpbird 247 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
9089ex 450 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9168, 90sylbid 230 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9291imp 445 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
93 simplr 792 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)
94 odz2prm2pw 41475 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9561, 92, 93, 94syl12anc 1324 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9695ex 450 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
9796ex 450 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9860, 97sylbid 230 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9937, 98syld 47 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
10026, 99sylbid 230 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
10119, 100sylbid 230 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
1021013impia 1261 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
10320, 102mpd 15 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266  -cneg 10267  cn 11020  2c2 11070  0cn0 11292  cz 11377  +crp 11832   mod cmo 12668  cexp 12860  cdvds 14983  cprime 15385  odcodz 15468  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542  df-fmtno 41440
This theorem is referenced by:  fmtnoprmfac1  41477  fmtnoprmfac2  41479
  Copyright terms: Public domain W3C validator