Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimcnv Structured version   Visualization version   GIF version

Theorem fnlimcnv 39899
Description: The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimcnv.1 𝑥𝐹
fnlimcnv.2 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimcnv.3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimcnv.4 (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimcnv (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
Distinct variable groups:   𝑚,𝑋   𝑥,𝑍   𝑥,𝑚   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝑋(𝑥,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem fnlimcnv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnlimcnv.4 . . . . 5 (𝜑𝑋𝐷)
2 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
32mpteq2dv 4745 . . . . . . 7 (𝑦 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
43eleq1d 2686 . . . . . 6 (𝑦 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5 fnlimcnv.2 . . . . . . 7 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
6 nfcv 2764 . . . . . . . . 9 𝑥𝑍
7 nfcv 2764 . . . . . . . . . 10 𝑥(ℤ𝑛)
8 fnlimcnv.1 . . . . . . . . . . . 12 𝑥𝐹
9 nfcv 2764 . . . . . . . . . . . 12 𝑥𝑚
108, 9nffv 6198 . . . . . . . . . . 11 𝑥(𝐹𝑚)
1110nfdm 5367 . . . . . . . . . 10 𝑥dom (𝐹𝑚)
127, 11nfiin 4549 . . . . . . . . 9 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
136, 12nfiun 4548 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
14 nfcv 2764 . . . . . . . 8 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
15 nfv 1843 . . . . . . . 8 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
16 nfcv 2764 . . . . . . . . . . 11 𝑥𝑦
1710, 16nffv 6198 . . . . . . . . . 10 𝑥((𝐹𝑚)‘𝑦)
186, 17nfmpt 4746 . . . . . . . . 9 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
19 nfcv 2764 . . . . . . . . 9 𝑥dom ⇝
2018, 19nfel 2777 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
21 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2221mpteq2dv 4745 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
2322eleq1d 2686 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
2413, 14, 15, 20, 23cbvrab 3198 . . . . . . 7 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
255, 24eqtri 2644 . . . . . 6 𝐷 = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
264, 25elrab2 3366 . . . . 5 (𝑋𝐷 ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
271, 26sylib 208 . . . 4 (𝜑 → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
2827simprd 479 . . 3 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
29 climdm 14285 . . 3 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
3028, 29sylib 208 . 2 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
31 nfrab1 3122 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
325, 31nfcxfr 2762 . . . 4 𝑥𝐷
33 fnlimcnv.3 . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
3432, 8, 33, 1fnlimfv 39895 . . 3 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
3534eqcomd 2628 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = (𝐺𝑋))
3630, 35breqtrd 4679 1 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wnfc 2751  {crab 2916   ciun 4520   ciin 4521   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  cuz 11687  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  fnlimabslt  39911
  Copyright terms: Public domain W3C validator