Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimabslt Structured version   Visualization version   GIF version

Theorem fnlimabslt 39911
Description: A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimabslt.p 𝑚𝜑
fnlimabslt.f 𝑚𝐹
fnlimabslt.n 𝑥𝐹
fnlimabslt.m (𝜑𝑀 ∈ ℤ)
fnlimabslt.z 𝑍 = (ℤ𝑀)
fnlimabslt.b ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimabslt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimabslt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimabslt.x (𝜑𝑋𝐷)
fnlimabslt.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
fnlimabslt (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝑀   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚)   𝑀(𝑥,𝑚)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fnlimabslt
Dummy variables 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnlimabslt.p . . . 4 𝑚𝜑
2 fnlimabslt.z . . . 4 𝑍 = (ℤ𝑀)
3 fnlimabslt.b . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
4 eqid 2622 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5 fnlimabslt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
6 nfcv 2764 . . . . . . . . 9 𝑥𝑍
7 nfcv 2764 . . . . . . . . . 10 𝑥(ℤ𝑛)
8 fnlimabslt.n . . . . . . . . . . . 12 𝑥𝐹
9 nfcv 2764 . . . . . . . . . . . 12 𝑥𝑚
108, 9nffv 6198 . . . . . . . . . . 11 𝑥(𝐹𝑚)
1110nfdm 5367 . . . . . . . . . 10 𝑥dom (𝐹𝑚)
127, 11nfiin 4549 . . . . . . . . 9 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
136, 12nfiun 4548 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
14 nfcv 2764 . . . . . . . 8 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
15 nfv 1843 . . . . . . . 8 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
16 nfcv 2764 . . . . . . . . . . 11 𝑥𝑦
1710, 16nffv 6198 . . . . . . . . . 10 𝑥((𝐹𝑚)‘𝑦)
186, 17nfmpt 4746 . . . . . . . . 9 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
19 nfcv 2764 . . . . . . . . 9 𝑥dom ⇝
2018, 19nfel 2777 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
21 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2221mpteq2dv 4745 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
2322eleq1d 2686 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
2413, 14, 15, 20, 23cbvrab 3198 . . . . . . 7 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
25 ssrab2 3687 . . . . . . 7 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2624, 25eqsstri 3635 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
275, 26eqsstri 3635 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
28 fnlimabslt.x . . . . 5 (𝜑𝑋𝐷)
2927, 28sseldi 3601 . . . 4 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
301, 2, 3, 4, 29allbutfifvre 39907 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
31 nfv 1843 . . . . . 6 𝑗𝜑
32 nfcv 2764 . . . . . 6 𝑗(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
33 fnlimabslt.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 fnlimabslt.g . . . . . . 7 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
358, 5, 34, 28fnlimcnv 39899 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
36 nfcv 2764 . . . . . . . . 9 𝑙((𝐹𝑚)‘𝑋)
37 fnlimabslt.f . . . . . . . . . . 11 𝑚𝐹
38 nfcv 2764 . . . . . . . . . . 11 𝑚𝑙
3937, 38nffv 6198 . . . . . . . . . 10 𝑚(𝐹𝑙)
40 nfcv 2764 . . . . . . . . . 10 𝑚𝑋
4139, 40nffv 6198 . . . . . . . . 9 𝑚((𝐹𝑙)‘𝑋)
42 fveq2 6191 . . . . . . . . . 10 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
4342fveq1d 6193 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑙)‘𝑋))
4436, 41, 43cbvmpt 4749 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑋))
4544a1i 11 . . . . . . 7 ((𝜑𝑗𝑍) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑋)))
46 fveq2 6191 . . . . . . . . 9 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
4746fveq1d 6193 . . . . . . . 8 (𝑙 = 𝑗 → ((𝐹𝑙)‘𝑋) = ((𝐹𝑗)‘𝑋))
4847adantl 482 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑙 = 𝑗) → ((𝐹𝑙)‘𝑋) = ((𝐹𝑗)‘𝑋))
49 simpr 477 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
50 fvexd 6203 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹𝑗)‘𝑋) ∈ V)
5145, 48, 49, 50fvmptd 6288 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
52 fnlimabslt.y . . . . . 6 (𝜑𝑌 ∈ ℝ+)
5331, 32, 2, 33, 35, 51, 52climd 39904 . . . . 5 (𝜑 → ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
54 nfv 1843 . . . . . . 7 𝑗(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
55 nfcv 2764 . . . . . . . . . . 11 𝑚𝑗
5637, 55nffv 6198 . . . . . . . . . 10 𝑚(𝐹𝑗)
5756, 40nffv 6198 . . . . . . . . 9 𝑚((𝐹𝑗)‘𝑋)
58 nfcv 2764 . . . . . . . . 9 𝑚
5957, 58nfel 2777 . . . . . . . 8 𝑚((𝐹𝑗)‘𝑋) ∈ ℂ
60 nfcv 2764 . . . . . . . . . 10 𝑚abs
61 nfcv 2764 . . . . . . . . . . 11 𝑚
62 nfmpt1 4747 . . . . . . . . . . . . . . . . 17 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
63 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑚dom ⇝
6462, 63nfel 2777 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
65 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑚𝑍
66 nfii1 4551 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6765, 66nfiun 4548 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6864, 67nfrab 3123 . . . . . . . . . . . . . . 15 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
695, 68nfcxfr 2762 . . . . . . . . . . . . . 14 𝑚𝐷
70 nfcv 2764 . . . . . . . . . . . . . . 15 𝑚
7170, 62nffv 6198 . . . . . . . . . . . . . 14 𝑚( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
7269, 71nfmpt 4746 . . . . . . . . . . . . 13 𝑚(𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7334, 72nfcxfr 2762 . . . . . . . . . . . 12 𝑚𝐺
7473, 40nffv 6198 . . . . . . . . . . 11 𝑚(𝐺𝑋)
7557, 61, 74nfov 6676 . . . . . . . . . 10 𝑚(((𝐹𝑗)‘𝑋) − (𝐺𝑋))
7660, 75nffv 6198 . . . . . . . . 9 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋)))
77 nfcv 2764 . . . . . . . . 9 𝑚 <
78 nfcv 2764 . . . . . . . . 9 𝑚𝑌
7976, 77, 78nfbr 4699 . . . . . . . 8 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌
8059, 79nfan 1828 . . . . . . 7 𝑚(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)
81 fveq2 6191 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
8281fveq1d 6193 . . . . . . . . 9 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
8382eleq1d 2686 . . . . . . . 8 (𝑚 = 𝑗 → (((𝐹𝑚)‘𝑋) ∈ ℂ ↔ ((𝐹𝑗)‘𝑋) ∈ ℂ))
8482oveq1d 6665 . . . . . . . . . 10 (𝑚 = 𝑗 → (((𝐹𝑚)‘𝑋) − (𝐺𝑋)) = (((𝐹𝑗)‘𝑋) − (𝐺𝑋)))
8584fveq2d 6195 . . . . . . . . 9 (𝑚 = 𝑗 → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) = (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))))
8685breq1d 4663 . . . . . . . 8 (𝑚 = 𝑗 → ((abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌 ↔ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8783, 86anbi12d 747 . . . . . . 7 (𝑚 = 𝑗 → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)))
8854, 80, 87cbvral 3167 . . . . . 6 (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∀𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8988rexbii 3041 . . . . 5 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
9053, 89sylibr 224 . . . 4 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
91 nfv 1843 . . . . . . 7 𝑚 𝑛𝑍
921, 91nfan 1828 . . . . . 6 𝑚(𝜑𝑛𝑍)
93 simpr 477 . . . . . . 7 ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9493a1i 11 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9592, 94ralimdaa 2958 . . . . 5 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∀𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9695reximdva 3017 . . . 4 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9790, 96mpd 15 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9830, 97jca 554 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
992rexanuz2 14089 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
10098, 99sylibr 224 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  wral 2912  wrex 2913  {crab 2916  Vcvv 3200   ciun 4520   ciin 4521   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   < clt 10074  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  smflimlem4  40982
  Copyright terms: Public domain W3C validator