Step | Hyp | Ref
| Expression |
1 | | fnlimabslt.p |
. . . 4
⊢
Ⅎ𝑚𝜑 |
2 | | fnlimabslt.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | fnlimabslt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
4 | | eqid 2622 |
. . . 4
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
5 | | fnlimabslt.d |
. . . . . 6
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
6 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑍 |
7 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(ℤ≥‘𝑛) |
8 | | fnlimabslt.n |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐹 |
9 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑚 |
10 | 8, 9 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝐹‘𝑚) |
11 | 10 | nfdm 5367 |
. . . . . . . . . 10
⊢
Ⅎ𝑥dom
(𝐹‘𝑚) |
12 | 7, 11 | nfiin 4549 |
. . . . . . . . 9
⊢
Ⅎ𝑥∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
13 | 6, 12 | nfiun 4548 |
. . . . . . . 8
⊢
Ⅎ𝑥∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
14 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑦∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
15 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ |
16 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑦 |
17 | 10, 16 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
18 | 6, 17 | nfmpt 4746 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
19 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
⇝ |
20 | 18, 19 | nfel 2777 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ |
21 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
22 | 21 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
23 | 22 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ )) |
24 | 13, 14, 15, 20, 23 | cbvrab 3198 |
. . . . . . 7
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
25 | | ssrab2 3687 |
. . . . . . 7
⊢ {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
26 | 24, 25 | eqsstri 3635 |
. . . . . 6
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
27 | 5, 26 | eqsstri 3635 |
. . . . 5
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
28 | | fnlimabslt.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
29 | 27, 28 | sseldi 3601 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
30 | 1, 2, 3, 4, 29 | allbutfifvre 39907 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
31 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑗𝜑 |
32 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑗(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) |
33 | | fnlimabslt.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
34 | | fnlimabslt.g |
. . . . . . 7
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
35 | 8, 5, 34, 28 | fnlimcnv 39899 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
36 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑙((𝐹‘𝑚)‘𝑋) |
37 | | fnlimabslt.f |
. . . . . . . . . . 11
⊢
Ⅎ𝑚𝐹 |
38 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚𝑙 |
39 | 37, 38 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝐹‘𝑙) |
40 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝑋 |
41 | 39, 40 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑚((𝐹‘𝑙)‘𝑋) |
42 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑙 → (𝐹‘𝑚) = (𝐹‘𝑙)) |
43 | 42 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝑚 = 𝑙 → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑙)‘𝑋)) |
44 | 36, 41, 43 | cbvmpt 4749 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑙 ∈ 𝑍 ↦ ((𝐹‘𝑙)‘𝑋)) |
45 | 44 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑙 ∈ 𝑍 ↦ ((𝐹‘𝑙)‘𝑋))) |
46 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) |
47 | 46 | fveq1d 6193 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙)‘𝑋) = ((𝐹‘𝑗)‘𝑋)) |
48 | 47 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑙 = 𝑗) → ((𝐹‘𝑙)‘𝑋) = ((𝐹‘𝑗)‘𝑋)) |
49 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
50 | | fvexd 6203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)‘𝑋) ∈ V) |
51 | 45, 48, 49, 50 | fvmptd 6288 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))‘𝑗) = ((𝐹‘𝑗)‘𝑋)) |
52 | | fnlimabslt.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
53 | 31, 32, 2, 33, 35, 51, 52 | climd 39904 |
. . . . 5
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
54 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑗(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
55 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚𝑗 |
56 | 37, 55 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝐹‘𝑗) |
57 | 56, 40 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑚((𝐹‘𝑗)‘𝑋) |
58 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑚ℂ |
59 | 57, 58 | nfel 2777 |
. . . . . . . 8
⊢
Ⅎ𝑚((𝐹‘𝑗)‘𝑋) ∈ ℂ |
60 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑚abs |
61 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚
− |
62 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) |
63 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚dom
⇝ |
64 | 62, 63 | nfel 2777 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ |
65 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚𝑍 |
66 | | nfii1 4551 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
67 | 65, 66 | nfiun 4548 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
68 | 64, 67 | nfrab 3123 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
69 | 5, 68 | nfcxfr 2762 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚𝐷 |
70 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚
⇝ |
71 | 70, 62 | nffv 6198 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚(
⇝ ‘(𝑚 ∈
𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) |
72 | 69, 71 | nfmpt 4746 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚(𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
73 | 34, 72 | nfcxfr 2762 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚𝐺 |
74 | 73, 40 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚(𝐺‘𝑋) |
75 | 57, 61, 74 | nfov 6676 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋)) |
76 | 60, 75 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑚(abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) |
77 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑚
< |
78 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑚𝑌 |
79 | 76, 77, 78 | nfbr 4699 |
. . . . . . . 8
⊢
Ⅎ𝑚(abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌 |
80 | 59, 79 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑚(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
81 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑗 → (𝐹‘𝑚) = (𝐹‘𝑗)) |
82 | 81 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝑚 = 𝑗 → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑗)‘𝑋)) |
83 | 82 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑚 = 𝑗 → (((𝐹‘𝑚)‘𝑋) ∈ ℂ ↔ ((𝐹‘𝑗)‘𝑋) ∈ ℂ)) |
84 | 82 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑗 → (((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋)) = (((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) |
85 | 84 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑚 = 𝑗 → (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) = (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋)))) |
86 | 85 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑚 = 𝑗 → ((abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌 ↔ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
87 | 83, 86 | anbi12d 747 |
. . . . . . 7
⊢ (𝑚 = 𝑗 → ((((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ (((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌))) |
88 | 54, 80, 87 | cbvral 3167 |
. . . . . 6
⊢
(∀𝑚 ∈
(ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ ∀𝑗 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
89 | 88 | rexbii 3041 |
. . . . 5
⊢
(∃𝑛 ∈
𝑍 ∀𝑚 ∈
(ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ ∃𝑛 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
90 | 53, 89 | sylibr 224 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
91 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑚 𝑛 ∈ 𝑍 |
92 | 1, 91 | nfan 1828 |
. . . . . 6
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
93 | | simpr 477 |
. . . . . . 7
⊢ ((((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
94 | 93 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
95 | 92, 94 | ralimdaa 2958 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
96 | 95 | reximdva 3017 |
. . . 4
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
97 | 90, 96 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
98 | 30, 97 | jca 554 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
99 | 2 | rexanuz2 14089 |
. 2
⊢
(∃𝑛 ∈
𝑍 ∀𝑚 ∈
(ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
100 | 98, 99 | sylibr 224 |
1
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |