MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcpbl Structured version   Visualization version   GIF version

Theorem frgpcpbl 18172
Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgpval.m 𝐺 = (freeGrp‘𝐼)
frgpval.b 𝑀 = (freeMnd‘(𝐼 × 2𝑜))
frgpval.r = ( ~FG𝐼)
frgpcpbl.p + = (+g𝑀)
Assertion
Ref Expression
frgpcpbl ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷))

Proof of Theorem frgpcpbl
Dummy variables 𝑘 𝑚 𝑛 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜))
2 frgpval.r . . 3 = ( ~FG𝐼)
3 eqid 2622 . . 3 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 eqid 2622 . . 3 (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))
5 eqid 2622 . . 3 (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) = (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥))
6 eqid 2622 . . 3 (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2𝑜)) ∖ {∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) = (𝑚 ∈ {𝑡 ∈ (Word ( I ‘Word (𝐼 × 2𝑜)) ∖ {∅}) ∣ ((𝑡‘0) ∈ (( I ‘Word (𝐼 × 2𝑜)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘𝑤)”⟩⟩)))‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgcpbl2 18170 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐴 ++ 𝐵) (𝐶 ++ 𝐷))
81, 2efger 18131 . . . . . 6 Er ( I ‘Word (𝐼 × 2𝑜))
98a1i 11 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → Er ( I ‘Word (𝐼 × 2𝑜)))
10 simpl 473 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → 𝐴 𝐶)
119, 10ercl 7753 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐴 ∈ ( I ‘Word (𝐼 × 2𝑜)))
121efgrcl 18128 . . . . . . 7 (𝐴 ∈ ( I ‘Word (𝐼 × 2𝑜)) → (𝐼 ∈ V ∧ ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)))
1311, 12syl 17 . . . . . 6 ((𝐴 𝐶𝐵 𝐷) → (𝐼 ∈ V ∧ ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)))
1413simprd 479 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
1513simpld 475 . . . . . . 7 ((𝐴 𝐶𝐵 𝐷) → 𝐼 ∈ V)
16 2on 7568 . . . . . . 7 2𝑜 ∈ On
17 xpexg 6960 . . . . . . 7 ((𝐼 ∈ V ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
1815, 16, 17sylancl 694 . . . . . 6 ((𝐴 𝐶𝐵 𝐷) → (𝐼 × 2𝑜) ∈ V)
19 frgpval.b . . . . . . 7 𝑀 = (freeMnd‘(𝐼 × 2𝑜))
20 eqid 2622 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
2119, 20frmdbas 17389 . . . . . 6 ((𝐼 × 2𝑜) ∈ V → (Base‘𝑀) = Word (𝐼 × 2𝑜))
2218, 21syl 17 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → (Base‘𝑀) = Word (𝐼 × 2𝑜))
2314, 22eqtr4d 2659 . . . 4 ((𝐴 𝐶𝐵 𝐷) → ( I ‘Word (𝐼 × 2𝑜)) = (Base‘𝑀))
2411, 23eleqtrd 2703 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐴 ∈ (Base‘𝑀))
25 simpr 477 . . . . 5 ((𝐴 𝐶𝐵 𝐷) → 𝐵 𝐷)
269, 25ercl 7753 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐵 ∈ ( I ‘Word (𝐼 × 2𝑜)))
2726, 23eleqtrd 2703 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐵 ∈ (Base‘𝑀))
28 frgpcpbl.p . . . 4 + = (+g𝑀)
2919, 20, 28frmdadd 17392 . . 3 ((𝐴 ∈ (Base‘𝑀) ∧ 𝐵 ∈ (Base‘𝑀)) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵))
3024, 27, 29syl2anc 693 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) = (𝐴 ++ 𝐵))
319, 10ercl2 7755 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐶 ∈ ( I ‘Word (𝐼 × 2𝑜)))
3231, 23eleqtrd 2703 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐶 ∈ (Base‘𝑀))
339, 25ercl2 7755 . . . 4 ((𝐴 𝐶𝐵 𝐷) → 𝐷 ∈ ( I ‘Word (𝐼 × 2𝑜)))
3433, 23eleqtrd 2703 . . 3 ((𝐴 𝐶𝐵 𝐷) → 𝐷 ∈ (Base‘𝑀))
3519, 20, 28frmdadd 17392 . . 3 ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷))
3632, 34, 35syl2anc 693 . 2 ((𝐴 𝐶𝐵 𝐷) → (𝐶 + 𝐷) = (𝐶 ++ 𝐷))
377, 30, 363brtr4d 4685 1 ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  c0 3915  {csn 4177  cop 4183  cotp 4185   ciun 4520   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ran crn 5115  Oncon0 5723  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554   Er wer 7739  0cc0 9936  1c1 9937  cmin 10266  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   ++ cconcat 13293   splice csplice 13296  ⟨“cs2 13586  Basecbs 15857  +gcplusg 15941  freeMndcfrmd 17384   ~FG cefg 18119  freeGrpcfrgp 18120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-frmd 17386  df-efg 18122
This theorem is referenced by:  frgp0  18173  frgpadd  18176
  Copyright terms: Public domain W3C validator