![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzosplitprm1 | Structured version Visualization version GIF version |
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.) |
Ref | Expression |
---|---|
fzosplitprm1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1061 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ) | |
2 | peano2zm 11420 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1083 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ) |
4 | zltlem1 11430 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ 𝐴 ≤ (𝐵 − 1))) | |
5 | 4 | biimp3a 1432 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1)) |
6 | eluz2 11693 | . . . 4 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1))) | |
7 | 1, 3, 5, 6 | syl3anbrc 1246 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) |
8 | fzosplitpr 12577 | . . 3 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) |
10 | zcn 11382 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
11 | 1cnd 10056 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 1 ∈ ℂ) | |
12 | 2cnd 11093 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 2 ∈ ℂ) | |
13 | 10, 11, 12 | subadd23d 10414 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → ((𝐵 − 1) + 2) = (𝐵 + (2 − 1))) |
14 | 2m1e1 11135 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
15 | 14 | oveq2i 6661 | . . . . . 6 ⊢ (𝐵 + (2 − 1)) = (𝐵 + 1) |
16 | 13, 15 | syl6req 2673 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) = ((𝐵 − 1) + 2)) |
17 | 16 | oveq2d 6666 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐴..^(𝐵 + 1)) = (𝐴..^((𝐵 − 1) + 2))) |
18 | npcan1 10455 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ((𝐵 − 1) + 1) = 𝐵) | |
19 | 10, 18 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 − 1) + 1) = 𝐵) |
20 | 19 | eqcomd 2628 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1)) |
21 | 20 | preq2d 4275 | . . . . 5 ⊢ (𝐵 ∈ ℤ → {(𝐵 − 1), 𝐵} = {(𝐵 − 1), ((𝐵 − 1) + 1)}) |
22 | 21 | uneq2d 3767 | . . . 4 ⊢ (𝐵 ∈ ℤ → ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) |
23 | 17, 22 | eqeq12d 2637 | . . 3 ⊢ (𝐵 ∈ ℤ → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))) |
24 | 23 | 3ad2ant2 1083 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))) |
25 | 9, 24 | mpbird 247 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 {cpr 4179 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 − cmin 10266 2c2 11070 ℤcz 11377 ℤ≥cuz 11687 ..^cfzo 12465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |