MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmulg Structured version   Visualization version   GIF version

Theorem ghmmulg 17672
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
ghmmulg.b 𝐵 = (Base‘𝐺)
ghmmulg.s · = (.g𝐺)
ghmmulg.t × = (.g𝐻)
Assertion
Ref Expression
ghmmulg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem ghmmulg
StepHypRef Expression
1 ghmmhm 17670 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹 ∈ (𝐺 MndHom 𝐻))
2 ghmmulg.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 ghmmulg.s . . . . . . 7 · = (.g𝐺)
4 ghmmulg.t . . . . . . 7 × = (.g𝐻)
52, 3, 4mhmmulg 17583 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
61, 5syl3an1 1359 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
763expa 1265 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
87an32s 846 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
983adantl2 1218 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
10 simpl1 1064 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1110, 1syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 MndHom 𝐻))
12 nnnn0 11299 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1312ad2antll 765 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
14 simpl3 1066 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
152, 3, 4mhmmulg 17583 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ -𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1611, 13, 14, 15syl3anc 1326 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1716fveq2d 6195 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
18 ghmgrp1 17662 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1910, 18syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
20 nnz 11399 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
2120ad2antll 765 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
222, 3mulgcl 17559 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
2319, 21, 14, 22syl3anc 1326 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
24 eqid 2622 . . . . . . 7 (invg𝐺) = (invg𝐺)
25 eqid 2622 . . . . . . 7 (invg𝐻) = (invg𝐻)
262, 24, 25ghminv 17667 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
2710, 23, 26syl2anc 693 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
28 ghmgrp2 17663 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
2910, 28syl 17 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐻 ∈ Grp)
30 eqid 2622 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
312, 30ghmf 17664 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
3210, 31syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹:𝐵⟶(Base‘𝐻))
3332, 14ffvelrnd 6360 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹𝑋) ∈ (Base‘𝐻))
3430, 4, 25mulgneg 17560 . . . . . 6 ((𝐻 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3529, 21, 33, 34syl3anc 1326 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3617, 27, 353eqtr4d 2666 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (--𝑁 × (𝐹𝑋)))
372, 3, 24mulgneg 17560 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
3819, 21, 14, 37syl3anc 1326 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
39 simprl 794 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4039recnd 10068 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4140negnegd 10383 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4241oveq1d 6665 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4338, 42eqtr3d 2658 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4443fveq2d 6195 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (𝐹‘(𝑁 · 𝑋)))
4536, 44eqtr3d 2658 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝐹‘(𝑁 · 𝑋)))
4641oveq1d 6665 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
4745, 46eqtr3d 2658 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
48 simp2 1062 . . 3 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
49 elznn0nn 11391 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
5048, 49sylib 208 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
519, 47, 50mpjaodan 827 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  -cneg 10267  cn 11020  0cn0 11292  cz 11377  Basecbs 15857   MndHom cmhm 17333  Grpcgrp 17422  invgcminusg 17423  .gcmg 17540   GrpHom cghm 17657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-mulg 17541  df-ghm 17658
This theorem is referenced by:  ghmcyg  18297  mulgrhm2  19847  dchrabs  24985
  Copyright terms: Public domain W3C validator