| Step | Hyp | Ref
| Expression |
| 1 | | nss 3663 |
. . . . 5
⊢ (¬
𝑈 ⊆
(𝑅1‘𝐴) ↔ ∃𝑥(𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) |
| 2 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (rank‘𝑦) = (rank‘𝑥)) |
| 3 | 2 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((rank‘𝑦) = 𝐴 ↔ (rank‘𝑥) = 𝐴)) |
| 4 | 3 | rspcev 3309 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑈 ∧ (rank‘𝑥) = 𝐴) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴) |
| 5 | 4 | ex 450 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑈 → ((rank‘𝑥) = 𝐴 → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 6 | 5 | ad2antrl 764 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ((rank‘𝑥) = 𝐴 → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 7 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝑈 ∈ ∪
(𝑅1 “ On)) |
| 8 | | simprl 794 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝑥 ∈ 𝑈) |
| 9 | | r1elssi 8668 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ ∪ (𝑅1 “ On) → 𝑈 ⊆ ∪ (𝑅1 “ On)) |
| 10 | 9 | sseld 3602 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝑈 → 𝑥 ∈ ∪
(𝑅1 “ On))) |
| 11 | 7, 8, 10 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝑥 ∈ ∪
(𝑅1 “ On)) |
| 12 | | tcrank 8747 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) →
(rank‘𝑥) = (rank
“ (TC‘𝑥))) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (rank‘𝑥) = (rank “
(TC‘𝑥))) |
| 14 | 13 | eleq2d 2687 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝐴 ∈ (rank‘𝑥) ↔ 𝐴 ∈ (rank “ (TC‘𝑥)))) |
| 15 | | gruelss 9616 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ 𝑈) |
| 16 | | grutr 9615 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ Univ → Tr 𝑈) |
| 17 | 16 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → Tr 𝑈) |
| 18 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 19 | | tcmin 8617 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ V → ((𝑥 ⊆ 𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈)) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ 𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈) |
| 21 | 15, 17, 20 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (TC‘𝑥) ⊆ 𝑈) |
| 22 | | rankf 8657 |
. . . . . . . . . . . . 13
⊢
rank:∪ (𝑅1 “
On)⟶On |
| 23 | | ffun 6048 |
. . . . . . . . . . . . 13
⊢
(rank:∪ (𝑅1 “
On)⟶On → Fun rank) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
rank |
| 25 | | fvelima 6248 |
. . . . . . . . . . . 12
⊢ ((Fun
rank ∧ 𝐴 ∈ (rank
“ (TC‘𝑥)))
→ ∃𝑦 ∈
(TC‘𝑥)(rank‘𝑦) = 𝐴) |
| 26 | 24, 25 | mpan 706 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (rank “
(TC‘𝑥)) →
∃𝑦 ∈
(TC‘𝑥)(rank‘𝑦) = 𝐴) |
| 27 | | ssrexv 3667 |
. . . . . . . . . . 11
⊢
((TC‘𝑥)
⊆ 𝑈 →
(∃𝑦 ∈
(TC‘𝑥)(rank‘𝑦) = 𝐴 → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 28 | 21, 26, 27 | syl2im 40 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 29 | 28 | ad2ant2r 783 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 30 | 14, 29 | sylbid 230 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝐴 ∈ (rank‘𝑥) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 31 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ¬ 𝑥 ∈
(𝑅1‘𝐴)) |
| 32 | | ne0i 3921 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑈 → 𝑈 ≠ ∅) |
| 33 | | gruina.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = (𝑈 ∩ On) |
| 34 | 33 | gruina 9640 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc) |
| 35 | 32, 34 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ Inacc) |
| 36 | | inawina 9512 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Inacc → 𝐴 ∈
Inaccw) |
| 37 | | winaon 9510 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Inaccw →
𝐴 ∈
On) |
| 38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ On) |
| 39 | | r1fnon 8630 |
. . . . . . . . . . . . . 14
⊢
𝑅1 Fn On |
| 40 | | fndm 5990 |
. . . . . . . . . . . . . 14
⊢
(𝑅1 Fn On → dom 𝑅1 =
On) |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ dom
𝑅1 = On |
| 42 | 38, 41 | syl6eleqr 2712 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ dom
𝑅1) |
| 43 | 42 | ad2ant2r 783 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝐴 ∈ dom
𝑅1) |
| 44 | | rankr1ag 8665 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom
𝑅1) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
| 45 | 11, 43, 44 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
| 46 | 31, 45 | mtbid 314 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ¬
(rank‘𝑥) ∈ 𝐴) |
| 47 | | rankon 8658 |
. . . . . . . . . . . . 13
⊢
(rank‘𝑥)
∈ On |
| 48 | | eloni 5733 |
. . . . . . . . . . . . . 14
⊢
((rank‘𝑥)
∈ On → Ord (rank‘𝑥)) |
| 49 | | eloni 5733 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 50 | | ordtri3or 5755 |
. . . . . . . . . . . . . 14
⊢ ((Ord
(rank‘𝑥) ∧ Ord
𝐴) →
((rank‘𝑥) ∈
𝐴 ∨ (rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
| 51 | 48, 49, 50 | syl2an 494 |
. . . . . . . . . . . . 13
⊢
(((rank‘𝑥)
∈ On ∧ 𝐴 ∈
On) → ((rank‘𝑥)
∈ 𝐴 ∨
(rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
| 52 | 47, 38, 51 | sylancr 695 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
| 53 | | 3orass 1040 |
. . . . . . . . . . . 12
⊢
(((rank‘𝑥)
∈ 𝐴 ∨
(rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)) ↔ ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
| 54 | 52, 53 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
| 55 | 54 | ord 392 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
| 56 | 55 | ad2ant2r 783 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (¬
(rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
| 57 | 46, 56 | mpd 15 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
| 58 | 6, 30, 57 | mpjaod 396 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴) |
| 59 | 58 | ex 450 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → ((𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 60 | 59 | exlimdv 1861 |
. . . . 5
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (∃𝑥(𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 61 | 1, 60 | syl5bi 232 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (¬ 𝑈 ⊆
(𝑅1‘𝐴) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
| 62 | | simpll 790 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ∈ Univ) |
| 63 | | ne0i 3921 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑈 → 𝑈 ≠ ∅) |
| 64 | 63, 34 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑦 ∈ 𝑈) → 𝐴 ∈ Inacc) |
| 65 | 64 | ad2ant2r 783 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ Inacc) |
| 66 | 65, 36, 37 | 3syl 18 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ On) |
| 67 | | simprl 794 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑦 ∈ 𝑈) |
| 68 | | fveq2 6191 |
. . . . . . . . . 10
⊢
((rank‘𝑦) =
𝐴 →
(cf‘(rank‘𝑦)) =
(cf‘𝐴)) |
| 69 | 68 | ad2antll 765 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = (cf‘𝐴)) |
| 70 | | elina 9509 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧
(cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
| 71 | 70 | simp2bi 1077 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Inacc →
(cf‘𝐴) = 𝐴) |
| 72 | 65, 71 | syl 17 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘𝐴) = 𝐴) |
| 73 | 69, 72 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = 𝐴) |
| 74 | | rankcf 9599 |
. . . . . . . . 9
⊢ ¬
𝑦 ≺
(cf‘(rank‘𝑦)) |
| 75 | | fvex 6201 |
. . . . . . . . . 10
⊢
(cf‘(rank‘𝑦)) ∈ V |
| 76 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 77 | | domtri 9378 |
. . . . . . . . . 10
⊢
(((cf‘(rank‘𝑦)) ∈ V ∧ 𝑦 ∈ V) →
((cf‘(rank‘𝑦))
≼ 𝑦 ↔ ¬
𝑦 ≺
(cf‘(rank‘𝑦)))) |
| 78 | 75, 76, 77 | mp2an 708 |
. . . . . . . . 9
⊢
((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦))) |
| 79 | 74, 78 | mpbir 221 |
. . . . . . . 8
⊢
(cf‘(rank‘𝑦)) ≼ 𝑦 |
| 80 | 73, 79 | syl6eqbrr 4693 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ≼ 𝑦) |
| 81 | | grudomon 9639 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝑦 ∈ 𝑈 ∧ 𝐴 ≼ 𝑦)) → 𝐴 ∈ 𝑈) |
| 82 | 62, 66, 67, 80, 81 | syl112anc 1330 |
. . . . . 6
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ 𝑈) |
| 83 | | elin 3796 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On)) |
| 84 | 83 | biimpri 218 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On)) |
| 85 | 84, 33 | syl6eleqr 2712 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ 𝐴) |
| 86 | | ordirr 5741 |
. . . . . . . . 9
⊢ (Ord
𝐴 → ¬ 𝐴 ∈ 𝐴) |
| 87 | 49, 86 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
| 88 | 87 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ 𝐴) |
| 89 | 85, 88 | pm2.21dd 186 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝑈 ⊆ (𝑅1‘𝐴)) |
| 90 | 82, 66, 89 | syl2anc 693 |
. . . . 5
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ⊆ (𝑅1‘𝐴)) |
| 91 | 90 | rexlimdvaa 3032 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴 → 𝑈 ⊆ (𝑅1‘𝐴))) |
| 92 | 61, 91 | syld 47 |
. . 3
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (¬ 𝑈 ⊆
(𝑅1‘𝐴) → 𝑈 ⊆ (𝑅1‘𝐴))) |
| 93 | 92 | pm2.18d 124 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 ⊆
(𝑅1‘𝐴)) |
| 94 | 33 | grur1a 9641 |
. . 3
⊢ (𝑈 ∈ Univ →
(𝑅1‘𝐴) ⊆ 𝑈) |
| 95 | 94 | adantr 481 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) →
(𝑅1‘𝐴) ⊆ 𝑈) |
| 96 | 93, 95 | eqssd 3620 |
1
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 =
(𝑅1‘𝐴)) |