MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prd Structured version   Visualization version   GIF version

Theorem hash2prd 13257
Description: A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 1-Nov-2020.)
Assertion
Ref Expression
hash2prd ((𝑃𝑉 ∧ (#‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))

Proof of Theorem hash2prd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hash2prb 13254 . . 3 (𝑃𝑉 → ((#‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
2 simpr 477 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑥, 𝑦})
3 3simpa 1058 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝑃𝑌𝑃))
43adantl 482 . . . . . . . . . . 11 ((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝑃𝑌𝑃))
54adantr 481 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋𝑃𝑌𝑃))
6 eleq2 2690 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑋𝑃𝑋 ∈ {𝑥, 𝑦}))
7 eleq2 2690 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑌𝑃𝑌 ∈ {𝑥, 𝑦}))
86, 7anbi12d 747 . . . . . . . . . . 11 (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
98adantl 482 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
105, 9mpbid 222 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))
11 simpl 473 . . . . . . . . . . . 12 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → (𝑥𝑃𝑦𝑃))
1211, 3anim12ci 591 . . . . . . . . . . 11 ((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → ((𝑋𝑃𝑌𝑃) ∧ (𝑥𝑃𝑦𝑃)))
13 neneq 2800 . . . . . . . . . . . . 13 (𝑋𝑌 → ¬ 𝑋 = 𝑌)
14133ad2ant3 1084 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ¬ 𝑋 = 𝑌)
1514adantl 482 . . . . . . . . . . 11 ((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → ¬ 𝑋 = 𝑌)
16 prel12g 4387 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃) ∧ (𝑥𝑃𝑦𝑃)) → (¬ 𝑋 = 𝑌 → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))))
1712, 15, 16sylc 65 . . . . . . . . . 10 ((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
1817adantr 481 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
1910, 18mpbird 247 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → {𝑋, 𝑌} = {𝑥, 𝑦})
202, 19eqtr4d 2659 . . . . . . 7 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑋, 𝑌})
2120exp31 630 . . . . . 6 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑃 = {𝑥, 𝑦} → 𝑃 = {𝑋, 𝑌})))
2221com23 86 . . . . 5 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
2322expimpd 629 . . . 4 ((𝑥𝑃𝑦𝑃) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
2423rexlimivv 3036 . . 3 (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
251, 24syl6bi 243 . 2 (𝑃𝑉 → ((#‘𝑃) = 2 → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
2625imp 445 1 ((𝑃𝑉 ∧ (#‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {cpr 4179  cfv 5888  2c2 11070  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  symg2bas  17818
  Copyright terms: Public domain W3C validator