MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashkf Structured version   Visualization version   GIF version

Theorem hashkf 13119
Description: The finite part of the size function maps all finite sets to their cardinality, as members of 0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
hashgval.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
hashkf.2 𝐾 = (𝐺 ∘ card)
Assertion
Ref Expression
hashkf 𝐾:Fin⟶ℕ0

Proof of Theorem hashkf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frfnom 7530 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω
2 hashgval.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
32fneq1i 5985 . . . . . . 7 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω)
41, 3mpbir 221 . . . . . 6 𝐺 Fn ω
5 fnfun 5988 . . . . . 6 (𝐺 Fn ω → Fun 𝐺)
64, 5ax-mp 5 . . . . 5 Fun 𝐺
7 cardf2 8769 . . . . . 6 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
8 ffun 6048 . . . . . 6 (card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On → Fun card)
97, 8ax-mp 5 . . . . 5 Fun card
10 funco 5928 . . . . 5 ((Fun 𝐺 ∧ Fun card) → Fun (𝐺 ∘ card))
116, 9, 10mp2an 708 . . . 4 Fun (𝐺 ∘ card)
12 dmco 5643 . . . . 5 dom (𝐺 ∘ card) = (card “ dom 𝐺)
13 fndm 5990 . . . . . . 7 (𝐺 Fn ω → dom 𝐺 = ω)
144, 13ax-mp 5 . . . . . 6 dom 𝐺 = ω
1514imaeq2i 5464 . . . . 5 (card “ dom 𝐺) = (card “ ω)
16 funfn 5918 . . . . . . . . 9 (Fun card ↔ card Fn dom card)
179, 16mpbi 220 . . . . . . . 8 card Fn dom card
18 elpreima 6337 . . . . . . . 8 (card Fn dom card → (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω)))
1917, 18ax-mp 5 . . . . . . 7 (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
20 id 22 . . . . . . . . . 10 ((card‘𝑦) ∈ ω → (card‘𝑦) ∈ ω)
21 cardid2 8779 . . . . . . . . . . 11 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
2221ensymd 8007 . . . . . . . . . 10 (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦))
23 breq2 4657 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → (𝑦𝑥𝑦 ≈ (card‘𝑦)))
2423rspcev 3309 . . . . . . . . . 10 (((card‘𝑦) ∈ ω ∧ 𝑦 ≈ (card‘𝑦)) → ∃𝑥 ∈ ω 𝑦𝑥)
2520, 22, 24syl2anr 495 . . . . . . . . 9 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → ∃𝑥 ∈ ω 𝑦𝑥)
26 isfi 7979 . . . . . . . . 9 (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦𝑥)
2725, 26sylibr 224 . . . . . . . 8 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
28 finnum 8774 . . . . . . . . 9 (𝑦 ∈ Fin → 𝑦 ∈ dom card)
29 ficardom 8787 . . . . . . . . 9 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
3028, 29jca 554 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
3127, 30impbii 199 . . . . . . 7 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) ↔ 𝑦 ∈ Fin)
3219, 31bitri 264 . . . . . 6 (𝑦 ∈ (card “ ω) ↔ 𝑦 ∈ Fin)
3332eqriv 2619 . . . . 5 (card “ ω) = Fin
3412, 15, 333eqtri 2648 . . . 4 dom (𝐺 ∘ card) = Fin
35 df-fn 5891 . . . 4 ((𝐺 ∘ card) Fn Fin ↔ (Fun (𝐺 ∘ card) ∧ dom (𝐺 ∘ card) = Fin))
3611, 34, 35mpbir2an 955 . . 3 (𝐺 ∘ card) Fn Fin
37 hashkf.2 . . . 4 𝐾 = (𝐺 ∘ card)
3837fneq1i 5985 . . 3 (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn Fin)
3936, 38mpbir 221 . 2 𝐾 Fn Fin
4037fveq1i 6192 . . . . 5 (𝐾𝑦) = ((𝐺 ∘ card)‘𝑦)
41 fvco 6274 . . . . . 6 ((Fun card ∧ 𝑦 ∈ dom card) → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
429, 28, 41sylancr 695 . . . . 5 (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
4340, 42syl5eq 2668 . . . 4 (𝑦 ∈ Fin → (𝐾𝑦) = (𝐺‘(card‘𝑦)))
442hashgf1o 12770 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
45 f1of 6137 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
4644, 45ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ0
4746ffvelrni 6358 . . . . 5 ((card‘𝑦) ∈ ω → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4829, 47syl 17 . . . 4 (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4943, 48eqeltrd 2701 . . 3 (𝑦 ∈ Fin → (𝐾𝑦) ∈ ℕ0)
5049rgen 2922 . 2 𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0
51 ffnfv 6388 . 2 (𝐾:Fin⟶ℕ0 ↔ (𝐾 Fn Fin ∧ ∀𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0))
5239, 50, 51mpbir2an 955 1 𝐾:Fin⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  ccom 5118  Oncon0 5723  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  ωcom 7065  reccrdg 7505  cen 7952  Fincfn 7955  cardccrd 8761  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  hashgval  13120  hashinf  13122  hashfxnn0  13124  hashfOLD  13126
  Copyright terms: Public domain W3C validator