| Step | Hyp | Ref
| Expression |
| 1 | | frfnom 7530 |
. . . . . . 7
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) Fn ω |
| 2 | | hashgval.1 |
. . . . . . . 8
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
| 3 | 2 | fneq1i 5985 |
. . . . . . 7
⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn
ω) |
| 4 | 1, 3 | mpbir 221 |
. . . . . 6
⊢ 𝐺 Fn ω |
| 5 | | fnfun 5988 |
. . . . . 6
⊢ (𝐺 Fn ω → Fun 𝐺) |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ Fun 𝐺 |
| 7 | | cardf2 8769 |
. . . . . 6
⊢
card:{𝑦 ∣
∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On |
| 8 | | ffun 6048 |
. . . . . 6
⊢
(card:{𝑦 ∣
∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On → Fun card) |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢ Fun
card |
| 10 | | funco 5928 |
. . . . 5
⊢ ((Fun
𝐺 ∧ Fun card) →
Fun (𝐺 ∘
card)) |
| 11 | 6, 9, 10 | mp2an 708 |
. . . 4
⊢ Fun
(𝐺 ∘
card) |
| 12 | | dmco 5643 |
. . . . 5
⊢ dom
(𝐺 ∘ card) = (◡card “ dom 𝐺) |
| 13 | | fndm 5990 |
. . . . . . 7
⊢ (𝐺 Fn ω → dom 𝐺 = ω) |
| 14 | 4, 13 | ax-mp 5 |
. . . . . 6
⊢ dom 𝐺 = ω |
| 15 | 14 | imaeq2i 5464 |
. . . . 5
⊢ (◡card “ dom 𝐺) = (◡card “ ω) |
| 16 | | funfn 5918 |
. . . . . . . . 9
⊢ (Fun card
↔ card Fn dom card) |
| 17 | 9, 16 | mpbi 220 |
. . . . . . . 8
⊢ card Fn
dom card |
| 18 | | elpreima 6337 |
. . . . . . . 8
⊢ (card Fn
dom card → (𝑦 ∈
(◡card “ ω) ↔ (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω))) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ (◡card “ ω) ↔ (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω)) |
| 20 | | id 22 |
. . . . . . . . . 10
⊢
((card‘𝑦)
∈ ω → (card‘𝑦) ∈ ω) |
| 21 | | cardid2 8779 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
| 22 | 21 | ensymd 8007 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦)) |
| 23 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (𝑥 = (card‘𝑦) → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ (card‘𝑦))) |
| 24 | 23 | rspcev 3309 |
. . . . . . . . . 10
⊢
(((card‘𝑦)
∈ ω ∧ 𝑦
≈ (card‘𝑦))
→ ∃𝑥 ∈
ω 𝑦 ≈ 𝑥) |
| 25 | 20, 22, 24 | syl2anr 495 |
. . . . . . . . 9
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) → ∃𝑥
∈ ω 𝑦 ≈
𝑥) |
| 26 | | isfi 7979 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥) |
| 27 | 25, 26 | sylibr 224 |
. . . . . . . 8
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) → 𝑦 ∈
Fin) |
| 28 | | finnum 8774 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin → 𝑦 ∈ dom
card) |
| 29 | | ficardom 8787 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin →
(card‘𝑦) ∈
ω) |
| 30 | 28, 29 | jca 554 |
. . . . . . . 8
⊢ (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω)) |
| 31 | 27, 30 | impbii 199 |
. . . . . . 7
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) ↔ 𝑦 ∈
Fin) |
| 32 | 19, 31 | bitri 264 |
. . . . . 6
⊢ (𝑦 ∈ (◡card “ ω) ↔ 𝑦 ∈ Fin) |
| 33 | 32 | eqriv 2619 |
. . . . 5
⊢ (◡card “ ω) = Fin |
| 34 | 12, 15, 33 | 3eqtri 2648 |
. . . 4
⊢ dom
(𝐺 ∘ card) =
Fin |
| 35 | | df-fn 5891 |
. . . 4
⊢ ((𝐺 ∘ card) Fn Fin ↔
(Fun (𝐺 ∘ card) ∧
dom (𝐺 ∘ card) =
Fin)) |
| 36 | 11, 34, 35 | mpbir2an 955 |
. . 3
⊢ (𝐺 ∘ card) Fn
Fin |
| 37 | | hashkf.2 |
. . . 4
⊢ 𝐾 = (𝐺 ∘ card) |
| 38 | 37 | fneq1i 5985 |
. . 3
⊢ (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn
Fin) |
| 39 | 36, 38 | mpbir 221 |
. 2
⊢ 𝐾 Fn Fin |
| 40 | 37 | fveq1i 6192 |
. . . . 5
⊢ (𝐾‘𝑦) = ((𝐺 ∘ card)‘𝑦) |
| 41 | | fvco 6274 |
. . . . . 6
⊢ ((Fun
card ∧ 𝑦 ∈ dom
card) → ((𝐺 ∘
card)‘𝑦) = (𝐺‘(card‘𝑦))) |
| 42 | 9, 28, 41 | sylancr 695 |
. . . . 5
⊢ (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦))) |
| 43 | 40, 42 | syl5eq 2668 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐾‘𝑦) = (𝐺‘(card‘𝑦))) |
| 44 | 2 | hashgf1o 12770 |
. . . . . . 7
⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 45 | | f1of 6137 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) |
| 46 | 44, 45 | ax-mp 5 |
. . . . . 6
⊢ 𝐺:ω⟶ℕ0 |
| 47 | 46 | ffvelrni 6358 |
. . . . 5
⊢
((card‘𝑦)
∈ ω → (𝐺‘(card‘𝑦)) ∈
ℕ0) |
| 48 | 29, 47 | syl 17 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈
ℕ0) |
| 49 | 43, 48 | eqeltrd 2701 |
. . 3
⊢ (𝑦 ∈ Fin → (𝐾‘𝑦) ∈
ℕ0) |
| 50 | 49 | rgen 2922 |
. 2
⊢
∀𝑦 ∈ Fin
(𝐾‘𝑦) ∈ ℕ0 |
| 51 | | ffnfv 6388 |
. 2
⊢ (𝐾:Fin⟶ℕ0
↔ (𝐾 Fn Fin ∧
∀𝑦 ∈ Fin (𝐾‘𝑦) ∈
ℕ0)) |
| 52 | 39, 50, 51 | mpbir2an 955 |
1
⊢ 𝐾:Fin⟶ℕ0 |