Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccbnd Structured version   Visualization version   GIF version

Theorem iccbnd 33639
Description: A closed interval in is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
iccbnd.1 𝐽 = (𝐴[,]𝐵)
iccbnd.2 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
Assertion
Ref Expression
iccbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))

Proof of Theorem iccbnd
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccbnd.2 . . 3 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
2 cnmet 22575 . . . 4 (abs ∘ − ) ∈ (Met‘ℂ)
3 iccbnd.1 . . . . . 6 𝐽 = (𝐴[,]𝐵)
4 iccssre 12255 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
53, 4syl5eqss 3649 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℝ)
6 ax-resscn 9993 . . . . 5 ℝ ⊆ ℂ
75, 6syl6ss 3615 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℂ)
8 metres2 22168 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐽 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
92, 7, 8sylancr 695 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
101, 9syl5eqel 2705 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Met‘𝐽))
11 resubcl 10345 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
1211ancoms 469 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
131oveqi 6663 . . . . . . 7 (𝑥𝑀𝑦) = (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦)
14 ovres 6800 . . . . . . . 8 ((𝑥𝐽𝑦𝐽) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1514adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1613, 15syl5eq 2668 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (𝑥(abs ∘ − )𝑦))
177sselda 3603 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥𝐽) → 𝑥 ∈ ℂ)
187sselda 3603 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦𝐽) → 𝑦 ∈ ℂ)
1917, 18anim12dan 882 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
20 eqid 2622 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 22574 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2219, 21syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2316, 22eqtrd 2656 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (abs‘(𝑥𝑦)))
24 simprr 796 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐽)
2524, 3syl6eleq 2711 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ (𝐴[,]𝐵))
26 elicc2 12238 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2726adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2825, 27mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2928simp1d 1073 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ ℝ)
3012adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝐴) ∈ ℝ)
31 resubcl 10345 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
3229, 30, 31syl2anc 693 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
33 simpll 790 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴 ∈ ℝ)
34 simprl 794 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐽)
3534, 3syl6eleq 2711 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ (𝐴[,]𝐵))
36 elicc2 12238 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3736adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3835, 37mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938simp1d 1073 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ ℝ)
40 simplr 792 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ∈ ℝ)
4128simp3d 1075 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐵)
4229, 40, 33, 41lesub1dd 10643 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦𝐴) ≤ (𝐵𝐴))
4329, 33, 30, 42subled 10630 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝐴)
4438simp2d 1074 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑥)
4532, 33, 39, 43, 44letrd 10194 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝑥)
4629, 30readdcld 10069 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 + (𝐵𝐴)) ∈ ℝ)
4738simp3d 1075 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐵)
4828simp2d 1074 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑦)
4933, 29, 40, 48lesub2dd 10644 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝑦) ≤ (𝐵𝐴))
5040, 29, 30lesubadd2d 10626 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((𝐵𝑦) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝑦 + (𝐵𝐴))))
5149, 50mpbid 222 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ≤ (𝑦 + (𝐵𝐴)))
5239, 40, 46, 47, 51letrd 10194 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ≤ (𝑦 + (𝐵𝐴)))
5339, 29, 30absdifled 14173 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((abs‘(𝑥𝑦)) ≤ (𝐵𝐴) ↔ ((𝑦 − (𝐵𝐴)) ≤ 𝑥𝑥 ≤ (𝑦 + (𝐵𝐴)))))
5445, 52, 53mpbir2and 957 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (abs‘(𝑥𝑦)) ≤ (𝐵𝐴))
5523, 54eqbrtrd 4675 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) ≤ (𝐵𝐴))
5655ralrimivva 2971 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴))
57 breq2 4657 . . . . 5 (𝑟 = (𝐵𝐴) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
58572ralbidv 2989 . . . 4 (𝑟 = (𝐵𝐴) → (∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
5958rspcev 3309 . . 3 (((𝐵𝐴) ∈ ℝ ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
6012, 56, 59syl2anc 693 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
61 isbnd3b 33584 . 2 (𝑀 ∈ (Bnd‘𝐽) ↔ (𝑀 ∈ (Met‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟))
6210, 60, 61sylanbrc 698 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653   × cxp 5112  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   + caddc 9939  cle 10075  cmin 10266  [,]cicc 12178  abscabs 13974  Metcme 19732  Bndcbnd 33566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-bnd 33578
This theorem is referenced by:  icccmpALT  33640
  Copyright terms: Public domain W3C validator