MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Visualization version   GIF version

Theorem icccmplem3 22627
Description: Lemma for icccmp 22628. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem3 (𝜑𝐵𝑆)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐴,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑥,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑧)   𝑆(𝑥,𝑧)   𝐽(𝑥)

Proof of Theorem icccmplem3
Dummy variables 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 icccmp.4 . . . . . . . 8 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3 ssrab2 3687 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ⊆ (𝐴[,]𝐵)
42, 3eqsstri 3635 . . . . . . 7 𝑆 ⊆ (𝐴[,]𝐵)
5 icccmp.5 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
6 icccmp.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
7 iccssre 12255 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 693 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
94, 8syl5ss 3614 . . . . . 6 (𝜑𝑆 ⊆ ℝ)
10 icccmp.1 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
11 icccmp.2 . . . . . . . . 9 𝑇 = (𝐽t (𝐴[,]𝐵))
12 icccmp.3 . . . . . . . . 9 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
13 icccmp.7 . . . . . . . . 9 (𝜑𝐴𝐵)
14 icccmp.8 . . . . . . . . 9 (𝜑𝑈𝐽)
1510, 11, 12, 2, 5, 6, 13, 14, 1icccmplem1 22625 . . . . . . . 8 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
1615simpld 475 . . . . . . 7 (𝜑𝐴𝑆)
17 ne0i 3921 . . . . . . 7 (𝐴𝑆𝑆 ≠ ∅)
1816, 17syl 17 . . . . . 6 (𝜑𝑆 ≠ ∅)
1915simprd 479 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
20 breq2 4657 . . . . . . . . 9 (𝑣 = 𝐵 → (𝑦𝑣𝑦𝐵))
2120ralbidv 2986 . . . . . . . 8 (𝑣 = 𝐵 → (∀𝑦𝑆 𝑦𝑣 ↔ ∀𝑦𝑆 𝑦𝐵))
2221rspcev 3309 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
236, 19, 22syl2anc 693 . . . . . 6 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
24 suprcl 10983 . . . . . 6 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) → sup(𝑆, ℝ, < ) ∈ ℝ)
259, 18, 23, 24syl3anc 1326 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
26 suprub 10984 . . . . . 6 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
279, 18, 23, 16, 26syl31anc 1329 . . . . 5 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
28 suprleub 10989 . . . . . . 7 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
299, 18, 23, 6, 28syl31anc 1329 . . . . . 6 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
3019, 29mpbird 247 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
31 elicc2 12238 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
325, 6, 31syl2anc 693 . . . . 5 (𝜑 → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
3325, 27, 30, 32mpbir3and 1245 . . . 4 (𝜑 → sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵))
341, 33sseldd 3604 . . 3 (𝜑 → sup(𝑆, ℝ, < ) ∈ 𝑈)
35 eluni2 4440 . . 3 (sup(𝑆, ℝ, < ) ∈ 𝑈 ↔ ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3634, 35sylib 208 . 2 (𝜑 → ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3714sselda 3603 . . . . 5 ((𝜑𝑢𝑈) → 𝑢𝐽)
3812rexmet 22594 . . . . . . 7 𝐷 ∈ (∞Met‘ℝ)
39 eqid 2622 . . . . . . . . . 10 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4012, 39tgioo 22599 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘𝐷)
4110, 40eqtri 2644 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
4241mopni2 22298 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
4338, 42mp3an1 1411 . . . . . 6 ((𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
4443ex 450 . . . . 5 (𝑢𝐽 → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
4537, 44syl 17 . . . 4 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
465ad2antrr 762 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
476ad2antrr 762 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
4813ad2antrr 762 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴𝐵)
4914ad2antrr 762 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑈𝐽)
501ad2antrr 762 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑈)
51 simplr 792 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑢𝑈)
52 simprl 794 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑤 ∈ ℝ+)
53 simprr 796 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
54 eqid 2622 . . . . . 6 sup(𝑆, ℝ, < ) = sup(𝑆, ℝ, < )
55 eqid 2622 . . . . . 6 if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵) = if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵)
5610, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55icccmplem2 22626 . . . . 5 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵𝑆)
5756rexlimdvaa 3032 . . . 4 ((𝜑𝑢𝑈) → (∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢𝐵𝑆))
5845, 57syld 47 . . 3 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
5958rexlimdva 3031 . 2 (𝜑 → (∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
6036, 59mpd 15 1 (𝜑𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650  Fincfn 7955  supcsup 8346  cr 9935   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  (,)cioo 12175  [,]cicc 12178  abscabs 13974  t crest 16081  topGenctg 16098  ∞Metcxmt 19731  ballcbl 19733  MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by:  icccmp  22628
  Copyright terms: Public domain W3C validator