Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgt Structured version   Visualization version   GIF version

Theorem iccpartgt 41363
Description: If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgt (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖   𝑗,𝑀   𝑃,𝑗,𝑖   𝜑,𝑗

Proof of Theorem iccpartgt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
21nnnn0d 11351 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
3 elnn0uz 11725 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 208 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
5 fzpred 12389 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
64, 5syl 17 . . . . . 6 (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
7 0p1e1 11132 . . . . . . . . 9 (0 + 1) = 1
87oveq1i 6660 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
98a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
109uneq2d 3767 . . . . . 6 (𝜑 → ({0} ∪ ((0 + 1)...𝑀)) = ({0} ∪ (1...𝑀)))
116, 10eqtrd 2656 . . . . 5 (𝜑 → (0...𝑀) = ({0} ∪ (1...𝑀)))
1211eleq2d 2687 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ (1...𝑀))))
13 elun 3753 . . . . . . 7 (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)))
14 velsn 4193 . . . . . . . 8 (𝑖 ∈ {0} ↔ 𝑖 = 0)
1514orbi1i 542 . . . . . . 7 ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))
1613, 15bitri 264 . . . . . 6 (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))
17 fzisfzounsn 12580 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
184, 17syl 17 . . . . . . . . . 10 (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
1918eleq2d 2687 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0...𝑀) ↔ 𝑗 ∈ ((0..^𝑀) ∪ {𝑀})))
20 elun 3753 . . . . . . . . . 10 (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}))
21 velsn 4193 . . . . . . . . . . 11 (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀)
2221orbi2i 541 . . . . . . . . . 10 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))
2320, 22bitri 264 . . . . . . . . 9 (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))
2419, 23syl6bb 276 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0...𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀)))
25 simpl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (0..^𝑀))
26 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 0 < 𝑗)
2726gt0ne0d 10592 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ≠ 0)
28 fzo1fzo0n0 12518 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1..^𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∧ 𝑗 ≠ 0))
2925, 27, 28sylanbrc 698 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (1..^𝑀))
30 iccpartgtprec.p . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ (RePart‘𝑀))
311, 30iccpartigtl 41359 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘))
32 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (𝑃𝑘) = (𝑃𝑗))
3332breq2d 4665 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑗)))
3433rspcv 3305 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑃‘0) < (𝑃𝑗)))
3529, 31, 34syl2imc 41 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → (𝑃‘0) < (𝑃𝑗)))
3635expd 452 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗 ∈ (0..^𝑀) → (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗))))
3736impcom 446 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗)))
38 breq1 4656 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 < 𝑗 ↔ 0 < 𝑗))
39 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
4039breq1d 4663 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘0) < (𝑃𝑗)))
4138, 40imbi12d 334 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗))))
4237, 41syl5ibr 236 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
4342expd 452 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑗 ∈ (0..^𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
4443com12 32 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
451, 30iccpartlt 41360 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘0) < (𝑃𝑀))
46 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (𝑃𝑗) = (𝑃𝑀))
4739, 46breqan12rd 4670 . . . . . . . . . . . . . . 15 ((𝑗 = 𝑀𝑖 = 0) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘0) < (𝑃𝑀)))
4845, 47syl5ibr 236 . . . . . . . . . . . . . 14 ((𝑗 = 𝑀𝑖 = 0) → (𝜑 → (𝑃𝑖) < (𝑃𝑗)))
4948a1dd 50 . . . . . . . . . . . . 13 ((𝑗 = 𝑀𝑖 = 0) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
5049ex 450 . . . . . . . . . . . 12 (𝑗 = 𝑀 → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
5144, 50jaoi 394 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
5251com12 32 . . . . . . . . . 10 (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
53 elfzelz 12342 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
5453ad3antlr 767 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑖 ∈ ℤ)
5553peano2zd 11485 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1...𝑀) → (𝑖 + 1) ∈ ℤ)
5655ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ)
57 elfzoelz 12470 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ)
5857ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
59 simpr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
6057, 53anim12ci 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ))
6160adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ))
62 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
6459, 63mpbid 222 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗)
6556, 58, 643jca 1242 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
6665adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
67 eluz2 11693 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘(𝑖 + 1)) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
6866, 67sylibr 224 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ (ℤ‘(𝑖 + 1)))
691ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℕ)
7030ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑃 ∈ (RePart‘𝑀))
71 1zzd 11408 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ∈ ℤ)
72 elfzelz 12342 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℤ)
7372adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℤ)
74 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
75 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑖...𝑗) → 𝑖𝑘)
76 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 1 ∈ ℝ)
77 elfzel1 12341 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℤ)
7877zred 11482 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℝ)
7972zred 11482 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℝ)
80 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
8176, 78, 79, 80syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑖...𝑗) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
8275, 81mpan2d 710 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (𝑖...𝑗) → (1 ≤ 𝑖 → 1 ≤ 𝑘))
8374, 82syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1...𝑀) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘))
8483ad3antlr 767 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘))
8584imp 445 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ≤ 𝑘)
86 eluz2 11693 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
8771, 73, 85, 86syl3anbrc 1246 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (ℤ‘1))
88 elfzel2 12340 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
8988ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑀 ∈ ℤ)
9089ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℤ)
9179adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℝ)
9257zred 11482 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
9392ad4antr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 ∈ ℝ)
9469nnred 11035 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℝ)
95 elfzle2 12345 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑖...𝑗) → 𝑘𝑗)
9695adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘𝑗)
97 elfzolt2 12479 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 < 𝑀)
9897ad4antr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 < 𝑀)
9991, 93, 94, 96, 98lelttrd 10195 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 < 𝑀)
100 elfzo2 12473 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1..^𝑀) ↔ (𝑘 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑘 < 𝑀))
10187, 90, 99, 100syl3anbrc 1246 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (1..^𝑀))
10269, 70, 101iccpartipre 41357 . . . . . . . . . . . . . . . 16 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → (𝑃𝑘) ∈ ℝ)
1031ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑀 ∈ ℕ)
10430ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑃 ∈ (RePart‘𝑀))
10557ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ ℤ)
106 fzoval 12471 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℤ → (𝑖..^𝑗) = (𝑖...(𝑗 − 1)))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) = (𝑖...(𝑗 − 1)))
108 elfzo0le 12511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0..^𝑀) → 𝑗𝑀)
109 0le1 10551 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 1
110 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
111 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
11253zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
113 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖))
114110, 111, 112, 113syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (1...𝑀) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖))
115109, 114mpani 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (1...𝑀) → (1 ≤ 𝑖 → 0 ≤ 𝑖))
11674, 115mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
117108, 116anim12ci 591 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (0 ≤ 𝑖𝑗𝑀))
118117adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ≤ 𝑖𝑗𝑀))
119 0zd 11389 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (0..^𝑀) → 0 ∈ ℤ)
120 elfzoel2 12469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (0..^𝑀) → 𝑀 ∈ ℤ)
121119, 120jca 554 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0..^𝑀) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ))
122121ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ))
123 ssfzo12bi 12563 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖𝑗𝑀)))
12461, 122, 59, 123syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖𝑗𝑀)))
125118, 124mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖..^𝑗) ⊆ (0..^𝑀))
126125adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) ⊆ (0..^𝑀))
127107, 126eqsstr3d 3640 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖...(𝑗 − 1)) ⊆ (0..^𝑀))
128127sselda 3603 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑘 ∈ (0..^𝑀))
129 iccpartimp 41353 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
130103, 104, 128, 129syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
131130simprd 479 . . . . . . . . . . . . . . . 16 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
13254, 68, 102, 131smonoord 41341 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑃𝑖) < (𝑃𝑗))
133132exp31 630 . . . . . . . . . . . . . 14 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝜑 → (𝑃𝑖) < (𝑃𝑗))))
134133com23 86 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
135134ex 450 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
136 elfzuz 12338 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (ℤ‘1))
137136adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (ℤ‘1))
13888adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑀 ∈ ℤ)
139 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
140 elfzo2 12473 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀))
141137, 138, 139, 140syl3anbrc 1246 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (1..^𝑀))
1421, 30iccpartiltu 41358 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀))
143 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
144143breq1d 4663 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑃𝑘) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃𝑀)))
145144rspcv 3305 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀) → (𝑃𝑖) < (𝑃𝑀)))
146141, 142, 145syl2imc 41 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀)))
147146expd 452 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑖 < 𝑀 → (𝑃𝑖) < (𝑃𝑀))))
148147impcom 446 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...𝑀) ∧ 𝜑) → (𝑖 < 𝑀 → (𝑃𝑖) < (𝑃𝑀)))
149148imp 445 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀))
150149a1i 11 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀)))
151 breq2 4657 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → (𝑖 < 𝑗𝑖 < 𝑀))
152151anbi2d 740 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) ↔ ((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀)))
15346breq2d 4665 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃𝑖) < (𝑃𝑀)))
154150, 152, 1533imtr4d 283 . . . . . . . . . . . . 13 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) → (𝑃𝑖) < (𝑃𝑗)))
155154exp4c 636 . . . . . . . . . . . 12 (𝑗 = 𝑀 → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
156135, 155jaoi 394 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
157156com12 32 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
15852, 157jaoi 394 . . . . . . . . 9 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
159158com13 88 . . . . . . . 8 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16024, 159sylbid 230 . . . . . . 7 (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
161160com3r 87 . . . . . 6 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16216, 161sylbi 207 . . . . 5 (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
163162com12 32 . . . 4 (𝜑 → (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16412, 163sylbid 230 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
165164imp32 449 . 2 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
166165ralrimivva 2971 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cun 3572  wss 3574  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  RePartciccp 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-iccp 41350
This theorem is referenced by:  icceuelpartlem  41371  iccpartnel  41374
  Copyright terms: Public domain W3C validator